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Observability of Quantum Phase Fluctuations in Cuprate Superconductors
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We study the order parameter phase fluctuation effects in cuprate superconductors near 7 = 0, using
a quasi-two-dimensional d-wave BCS model. An effective phason theory is obtained which is used to
estimate the strength of the fluctuations, the fluctuation correction to the in-plane penetration depth, and
the pair-field susceptibility. We find that, while the phase fluctuation effects are difficult to observe in the
renormalization of the superfluid phase stiffness, they may be observed in a pair tunneling experiment

which measures the pair-field susceptibility.
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Underdoped cuprates exhibit large deviations from the
predictions of BCS mean-field theory, including a large gap
A which does not scale with the transition temperature 7.,
and a “pseudogap” feature in the normal state [1]. These
facts, together with the empirical scaling of the superfluid
phase stiffness (SPS) and 7. with doping [2], have moti-
vated a picture of the cuprates in which the discrepancies
are attributed to strong phase fluctuations [3]. The esti-
mated phase fluctuation energy scale is smaller than the
gap (pairing) energy scale in these materials, and within
this picture 7, is determined by the small SPS rather than
the gap energy. The pseudogap is ascribed to a precur-
sor pairing amplitude whose phase coherence is destroyed
above T, [4].

As many other explanations for these effects have been
put forward, it is of great interest to devise tests of the
phase fluctuation scenario which distinguish it from oth-
ers. Some evidence for thermal phase fluctuation effects
was provided by Corson et al. [5], who observed unusual
conductivity resonances in underdoped Bi;Sr,CaCu,0g+ 5
(Bi2212) near T, and analyzed their data using two-
dimensional Kosterlitz-Thouless-Berezinskii dynamics
in the terahertz range. It has been claimed that phase
fluctuations are the dominant excitations even at low
temperatures 7 < T, [6], determining the well-known
linear-7" dependence of the penetration depth [7]. How-
ever, Millis et al. [8] have shown that quantum phase
fluctuations cannot account for this behavior. Quantum
phase fluctuations do have important consequences for
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the superconductor-insulator transition [9], and the c-axis
optical conductivity [10]. The above probes provide
indirect observation of the phase fluctuation -effects
through electronic observables which are modified by
the phase fluctuations. In this paper, we search for more
direct probes of phase fluctuations within a model of
quasi-two-dimensional d-wave BCS superconductors with
interlayer Josephson coupling near optimal doping.

The in-plane SPS can be expressed as D, =
Ns.ab h?/4md where ns.qp 1S the planar superfluid electron
density, m is the effective mass of the quasiparticle, and
d is the interplanar spacing. Because D, is determined
by the quasiparticle properties which are not strongly
renormalized by the phase fluctuations, we find that
although the renormalization of the Debye-Waller factor
(e'?) is relatively strong, both the SPS at T = 0 and
its temperature corrections are weakly renormalized,
in contrast to the case of a Josephson junction array
(JJA) model [6,11]. We also consider an experiment to
measure the excess current in a tunnel junction, which
can be directly related to the pair-field susceptibility [12]
x = —i0(){A(r, 1), AT(0,0)]). For the cuprates we find
that this current is experimentally observable, due to the
combination of large phase fluctuations and a low-lying
c-axis plasmon mode. We predict a pronounced peak
in the excess current at the c-axis Josephson plasma
frequency w,.

We begin with a continuum BCS model with d-wave
pairing symmetry in an isolated two-dimensional layer at

| temperature 7 = 1/ in the superconducting state:
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with the interaction strength g > 0. Here and throughout
the paper we set i = c = kg =1 for convenience
except when numerical values are estimated.  The
gap has the property that [d’re PTAR,r,7) =
AR, 7)(p? - p}z,)/pz. Then we factor the pairing field
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as A(x, 7) = |A(x, 7)|e!®®7); in what follows we will as-
sume that the amplitude of the order parameter is constant,
|A(x,7)| = A, and focus on the phase degree of freedom,
¢ . In order to decouple the ¢ field from the order parame-
ter amplitude, we perform a singular gauge transformation
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o(X,7) = co(x,7)e ¢®7/2 with 4, the field op-
erators for the transformed quasiparticle. The phase-
quasiparticle coupling terms are then
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where fb is the Nambu spinor. The wave vector of the phase
fluctuations has an upper cutoff A, of order & ' ~ A/vp

since beyond this momentum scale the mean-field assump-
tion breaks down. Here we consider only the effect of
longitudinal phase fluctuations since the production of
vortex pairs is energetically unfavorable near 7 = 0
and far away from the insulator transition. In order to
study a realistic model, we consider such layers of two-
dimensional superconductors with an interlayer distance
d and a weak Josephson tunneling (J) between adjacent
layers, and a three-dimensional Coulomb interaction
V(q) = 4me?/€epq®, where q = (q),q.), with q and
q. the in-plane and c-axis components of ¢, and €, the
background dielectric constant. After integrating out the
fermions we can obtain the effective phase-only action;
the Gaussian term is

ARG
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with w, = 27nT the bosonic Matsubara frequen-
cies. The plasma frequency w, is defined through

02(q) = (wiqj + w2q1)/(q] + q1) where @ =

Vamng,e?/eymd, ng, is the planar charge-carrier
density at the plasma resonance frequency, and
w. = \J4mJd*e?/€, is the c-axis Josephson plasma
energy. Equation (3) gives the correct plasma spectrum
for a layered superconductor, with w,;, the planar plasma
frequency at T = 0 which is 0.44—-1.4 eV [13], and w. is
the c-axis plasma frequency which is about 0.6 meV in
Bi2212 [14] (larger in other materials), with an interlayer
distance d =~ 1.5 nm and a dielectric constant of €;, = 10
[14]. The in-plane SPS D,, = ny»/4md can be read
off from Eq. (3) as the coefficient of (V,,¢)?/2 in the
® — 0 and |q| — O limits. The quasiparticle damping
term, which will broaden the plasma mode in Eq. (3), has
been omitted, but the effect is known to be small even
in the case of the d-wave quasiparticle spectrum [14,15],
and it will not affect the order of magnitude estimate of
the correction to the SPS in what follows.

We first estimate the strength of the phase fluctuation
from Eq. (3). One measure of the strength is the De-
bye-Waller factor a = e*<¢2>, which for instance can be
determined from the c-axis optical conductivity [10]. For
our model, at T = 0 we have
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From this expression we see that the size of the quan-
tum phase fluctuations is determined by the ratio of the
Coulomb energy of a Cooper pair to the plasma energy;
in the cuprates the short coherence lengths and small su-
perfluid densities conspire to enhance these fluctuations.
For instance, assuming &, =~ 20 A and with the parame-
ters given above, we estimate from Eq. (4) that (¢?) ranges
from 0.1 to 1, which is a sizable number compared to, for
instance, 1072 in Pb. In this paper we study the effect of
these strong phase fluctuations in the BCS model given in
Eq. (1), which is more appropriate near optimal doping,
far away from the insulator transition.

Since we are interested in the renormalization of the
SPS, we need to go beyond the quadratic expansion in
Eq. (3). For instance, in the JJA model, the effective
SPS can be substantially renormalized due to the non-
trivial potential of the form cos(¢; — ¢;) [11]. In our
model, higher-order terms can be determined by expand-
ing Eq. (2) and integrating out the fermions with a d-wave
gap. Each n-point vertex of the V¢ field is a fermion
loop (see Fig. 1). Therefore, the renormalization of the
SPS and its temperature dependence is determined by the
magnitudes of the fermion loops. From the new effective
theory of the phase fields thus obtained,

Seril @] = Zf d*xy f d*x0, T®(x1, 22, ... X20)
X Vig(x1)Vad(x2)--- Vo, (x2,), (5)

where I'®") are the 2nth-order phason vertices, we can es-
timate the renormalization of the in-plane SPS by using
the one loop expansion in ¢ as in Fig. 2. At T = 0, we
can show that the diagrams in Figs. 2(a), 2(b), and 2(c)
cancel one another in the limit of zero external momen-
tum and frequency by using the identity i9,G(p, w) =
G*(p, ) and performing the integration by parts in w,
where G(p, w) is a Gorkov Greens function. Conse-
quently, the only contribution comes from 2(d). The cor-
rection to the SPS is found to be

6Dab ezAg
D 6ns,ab erhiwgp

(6)

Assuming that the in-plane penetration depth is
Aap = Jmc2d[4mng pe? =~ 2000 A, we estimate that
8D,y/Da, = 1071, This should be compared to a 40%
reduction obtained using the JJA model [11]. In our
model, the phason vertices are determined by the d-wave

Sint[¢;\|f,\|ﬂf|= ..... < +
seff[(l)]=O +-( O "‘Q + O

FIG. 1. The schematic diagram of the quasiparticle-phase field
coupling and the effective action of the phase. The solid lines
represent the quasiparticle and the dashed lines the phase field.
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FIG. 2. Correction to the superfluid phase stiffness in one-loop
expansion in the phase field.

quasiparticle fermion loops, which are smaller than the
vertices of a JJA model; consequently the renormalization
of the SPS is smaller.

Next we study the temperature dependence of the SPS.
The BCS theory gives a linear temperature dependence
due to thermal excitations of quasiparticles, D,,(T) =
D,y (0) — aT where a = vpIn(2)/4mvad. Here vy is
the slope of the gap at the node in momentum space.
er ﬁgld that the one-loop correction to a is da/a =
%}Fiﬁzb ~ 1072, The increase in the slope a due to phase
fluctuations is therefore hardly a measurable quantity, in
agreement with the JJA result [11]. Additional tempera-
ture dependence can be obtained from considering classi-
cal phase fluctuations or by coupling the phason to a heat
bath [6]. However, classical phase fluctuation effects are
not relevant to our model and the coupling to the heat bath
leads to only a subleading T2 correction to the SPS [8].

Unlike quasiparticle properties represented by the SPS
as discussed above, the phase fluctuation effects on Cooper
pair properties can be significant. Here we propose an ex-
periment which can measure the strength and the form of
the phase fluctuations via the pair-field susceptibility. We
consider a c-axis tunnel junction between two cuprate su-
perconductors as illustrated in Fig. 3 [16]. The Josephson
coupling between the phases (denoted by ¢ and ¢') of
the two superconductors will lead to the usual Josephson
current oscillating at a frequency of 2¢V /h if there is a
potential difference V across the junction. There will also
be a quasiparticle tunneling current. In addition, an excess
current will flow due to the Josephson coupling of the su-
perconducting pair field of one superconducting electrode
to the fluctuating pair field of the other. To isolate the ex-
cess current a small magnetic field is applied parallel to the
junction to suppress the Josephson current, and the quasi-
particle tunneling current must be modeled and subtracted
[12]. The excess current is interesting because it can be re-
lated to the pair-field susceptibility at a frequency 2 eV/i
[17] and can thus provide information about the spectrum
of phase fluctuations.

To specialize the experiment to our case, we suppose that
both of the electrodes are identical with a gap A and ignore
the fluctuations in the amplitude of the order parameter
assuming that 2¢V << A. For simplicity, we consider a
junction in the ab plane (at z = 0) of dimensions L, X
L, with a magnetic field H, in the b direction, and we will
work at zero temperature. If we assume that the thickness
of the electrodes is larger than A., the c-axis penetration

0.0 . . .
0.0 1.0 2.0
® (meV)

FIG. 3. Excess pair tunneling current where w,. = 0.6 meV
and o = 0.75. The inset illustrates a pair tunneling experiment
with two cuprate superconducting electrodes SC and SC'. We
assume a junction contact area of 10~® m?, a normal state junc-
tion resistance Ry = 30 (), and an in-plane magnetic field of
H ~ 0.3 G. [See Eq. (13).]

depth, the Josephson coupling Hamiltonian for a phase
difference 6 ¢ (r,t) = ¢(r,t) — ¢'(r,1) is

H; = f—;e_i“”f dr %P0 g () + He., (7)
where E; is the Josephson coupling energy, S = L,L,
is the junction contact area, g, =~ 4eH, Ao/hc [17], and
w = 2 eV/h. The current through the junction is
7 = _ZeEJ Imeiiwtf d3reiq‘x<ei5¢(r’[)>5(z). (8)
hS
If we calculate the current to zeroth order in H;, and carry
out the averages with respect to the Gaussian action in
Eq. (3), we obtain the Josephson current with a critical
current I. = (2¢E;/h)a which is renormalized by phase
fluctuations through the Debye-Waller factor a (there is
no quasiparticle current in our model). By calculating the
current to first order in H; (linear response), we obtain the
excess current,

eE2
I (@,q,) = S—héImDR(qx,qy =0,w;2=0), (9

where the retarded pair-field susceptibility is
DR(r,1) = —if(1) [ ®*T1, 700 (10)

For @ > 0 we have ImD®(q, w) = ImD(q, w), where
D(q, w) is the Fourier transform of the time-ordered cor-
relation function, which for a Gaussian action is

D(r.1) = —ia?eXTIeEN600)
~ —iaXl + AT[¢(r,0)$(0,00)}, (11)

where the factor of 2 comes from the two sides of the junc-
tion and 7T is the time-ordering operator. Equation (11)
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assumes an expansion in the small parameter Ina. If we
neglect the boundary effects near the junction, we can ob-
tain the propagator for the phase fields from the action in
Eq. (3); after an analytic continuation, we have

—4iV(q)

For an isotropic plasma frequency w, it can be shown
that the excess current consists of a series of § functions at
integer multiples of w . This result is somewhat academic
since in the known isotropic superconductors the plasma
energy is much larger than the gap energy, and we would
expect amplitude fluctuations and quasiparticle damping to
completely obliterate this effect. For an anisotropic plasma
frequency these resonances become broadened —since the
junction is localized at z = 0, we must integrate over ¢ | ,
which results in a plasma frequency that ranges from .
(when g./q, — 0)to wy, (When g, /g, — 0). The result
of the calculation is

2mel?
qx ebLnyﬁ

) 0w — w)0(wy — o)

J@? = 02) (02 — 0?)

(13)

I, = (

To quench the background Josephson current, a field
may be chosen such that g, = 27 /L,; a result is shown
in Fig. 3.

The excess current exhibits a sharp onset at v = w,
with a peak of the form (w2 — w?)~!/2. This peak would
be rounded by the small quasiparticle damping which we
have not considered here. This experiment would serve
as a direct observation of the phase fluctuations and as an
alternative way to measure the c-axis Josephson plasma
energy [14] lying below the maximum gap. In addi-
tion, it would provide a measure of the strength of the
phase fluctuations. The gapless collective modes studied
in Refs. [12,17] are due to the order parameter fluctuations
which are rendered visible near the transition temperature,
which are in principle observable in any superconductors,
whereas the quantum phason modes that we studied are
observable as a result of the intrinsically strong phase fluc-
tuations and the quasi-two-dimensionality of cuprate ma-
terials. Therefore, the result shown in Fig. 3 is a special
zero-temperature property of cuprate superconductors.

We have shown that in the case of the quasi-two-
dimensional d-wave BCS model that we used here,
the resulting correction to the absolute value and the
temperature dependence of the in-plane SPS is minute
despite the strong phase fluctuations. Since quasiparticle
interaction effects can obscure the fluctuation corrections
to the SPS, it may be difficult to observe the effects of
phase fluctuations on the penetration depth. As a more
direct measurement, we have proposed a pair tunneling
experiment which can probe the strength and spectrum
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of the quantum phase fluctuations. We expect that the
pair-field susceptibility will show a pronounced peak at
w = w.. It will be also interesting to explore the role of
the order parameter fluctuations at the superconductor-
insulator transition in the underdoped regime via the
suggested experiment. In the underdoped regime, the
simple BCS model fails, especially at the superconduc-
tor-insulator transition which is one extreme example of
the renormalization of the SPS, and the physics of doped
Mott insulators needs to be taken into account.
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