
VOLUME 86, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 23 APRIL 2001
Electron Spectral Function and Algebraic Spin Liquid for the Normal State
of Underdoped High Tc Superconductors
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We propose to describe the spin fluctuations in the normal state (spin-pseudogap phase) of underdoped
high Tc cuprates as a manifestation of an algebraic spin liquid. Within the slave boson implementation
of spin-charge separation, the normal state is described by massless Dirac fermions, charged bosons, and
a gauge field. The gauge interaction, as an exact marginal perturbation, drives the mean-field free-spinon
fixed point to a new spin-quantum fixed point —the algebraic spin liquid. Luttinger-liquid-like line
shapes for the electron spectral function are obtained in the normal state, and we show how a coherent
quasiparticle peak appears as spin and charge recombine.
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Introduction.—The key property of high Tc supercon-
ductors is their Mott insulator property at half filling. Af-
ter integrating out the excitations above the charge gap at
half filling, the system is described by a generalized t-J
(GtJ) model
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which may contain long range and multiple spin couplings
indicated by “. . .”. Upon doping, the charge carriers form
a new non-Fermi-liquid metallic state. Understanding this
new metallic state is the key to understanding high Tc su-
perconductors. For underdoped high Tc superconductors,
the metallic state has two striking properties. First, the
Fermi surface does not form a closed loop. Second, the
electron spectral function contains no sharp quasiparticle
peak. Although we cannot derive the above properties
from the GtJ model, we find, in the slave-boson approach
[1] to the GtJ model, that a metallic state described by one
of the slave-boson mean-field states — the staggered flux
(sF) state (which is also called d-wave paired state)—has
a Fermi surface which does not form a closed loop [2]. The
sF state can also explain many other unique properties of
underdoped high Tc superconductors, such as the positive
charge and the low density of the charge carriers. There-
fore in this paper we use the sF state as our starting point
to study the electron spectral function in underdoped high
Tc superconductors. The effective theory of the sF state is
given in Refs. [2,3], which contains spinons, holons, and
a U�1� gauge field as low energy excitations.

The electron spectral function obtained at the mean-field
level [ignoring the U�1� gauge interaction] [2] has a line
shape different from the one measured in experiments.
In this paper, we include the gauge fluctuations in our
calculation of the electron spectral function. We find that
the U�1� gauge interaction does not confine the spinons and
holons (at least above a certain energy). The U�1� gauge
interaction turns out to be an exact marginal perturbation
that drives the mean-field spinon fixed point described by
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free massless Dirac fermions to a new spin-quantum fixed
point, which in turn produces a Luttinger-liquid-like line
shape for the spinon spectral function and the electron
spectral function [4], at least in the very low doping limit.
We call this new spin-quantum fixed point —the algebraic
spin liquid (ASL).

We also show how the opening of a gap in the gauge field
spectrum yields spin-charge recombination and restoration
of a coherent peak in the electron spectral function, which
has been observed in the superconducting phase of the
cuprates [5–9]. The mechanism of the gap formation is as
yet not well understood theoretically. It can be due to either
boson condensation or confinement caused by instantons
[10,11]. We find that analyzing doping dependent angle-
resolved photoemission spectroscopy (ARPES) results can
help to clarify this issue. If the gap in the gauge field is due
to boson condensation (the Higgs mechanism), the sharp
quasiparticle peak will appear only in the superconducting
phase [8]. The weight of the sharp quasiparticle peak will
increase as the superfluid density increases, Z ~ x�rs�2a

[8,9]. On the other hand, if the gap of the gauge field is
opened via the instanton effect, the weight of the sharp
quasiparticle peak will be proportional to the doping, Z ~

x, and the peak may appear above Tc.
Dirac spectrum in high Tc superconductors.—Our ex-

perimentally motivated starting point is the staggered flux
state where the mean-field degrees of freedom are free
fermionic spin carrying particles (spinons) and charged
bosons (holons). The question of interest to us is whether
the mean-field spinons survive the inclusion of fluctua-
tions, in particular, the gauge fluctuations, around the
mean-field state. In order to analyze this problem we have
mapped the lattice effective theory for the sF state (at zero
doping) onto a continuum theory of massless Dirac spinors
coupled to a gauge field [12], whose Euclidean action reads

S �
Z

d3x
X
m

NX
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C̄sys,m�≠m 2 iam�gmCs , (1)

where ys,0 � 1 and N � 2, but in the following we
treat N as an arbitrary integer. In general ys,1 fi ys,2.
© 2001 The American Physical Society 3871



VOLUME 86, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 23 APRIL 2001
However, for simplicity we assume ys,i � 1 here. The
Fermi field Cs is a 4 3 1 spinor which describes lattice
spinons with momenta near �6p�2, 6p�2�. The 4 3 4
gm matrices form a representation of the Dirac algebra
�gm, gn� � 2dmn (m, n � 0, 1, 2). The dynamics for the
U�1� gauge field arises solely due to the screening by
bosons and fermions, both of which carry gauge charge.
In the low doping limit, however, we include only the
screening by the fermion fields [13], which yields
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Spectral function, normal state.—We have analyzed
the gauge invariant spinon Green’s function of the above
model in a large N expansion. The details of the calcula-
tion will be described elsewhere [14]. Here we state just
the result
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where C is determined by the energy range over which
our effective theory is supposed to be valid. Note that
the above value of a is for the ys,1 � ys,2 � y case. a

will take a different value if ys,1 fi ys,2. Comparing this
dressed propagator with the free spinon Green’s function
G0 �

2ikngn

k2 , we see that the inclusion of the gauge fluc-
tuations has destroyed the coherent quasiparticle pole by
changing the exponent of the algebraic decay. An impor-
tant result coming out of this calculation is that the gauge
interaction does not generate any mass and/or chemical po-
tential terms for the spinons. Since the conserved current
(that couples to am) cannot have any anomalous dimension,
the gauge fluctuation represents an exact marginal pertur-
bation whose inclusion at the mean-field free-spinon fixed
point yields a new phase with novel algebraic behavior.
This new quantum fixed point for the spins is the algebraic
spin liquid mentioned above [15]. We see that the ASL
state contains no free quasiparticles at low energies. It is
not the confined phase of the U�1� gauge field, however,
which would bind the spinons into a spin wave. The ASL
is closer to the deconfined phase even though there are no
free spinon quasiparticles at low energies. We still say that
there is spin-charge separation in the ASL.

We remark that despite many similarities, there is a
difference between our ASL proposal and the quantum-
critical-point (QCP) approach to high Tc superconductors
[17]. We do not assume or require a nearby quantum phase
transition which gives rise to a QCP. The ASL can exist as
a phase despite the fact that its gapless excitations interact
even at lowest energies.

In the following we determine the behavior of the physi-
cal electron spectral function from correlations in the ASL.
By virtue of the spin-charge separation implemented in
3872
the slave-boson theory, the physical electron operator is a
product of a holon and a spinon. As mentioned above at the
mean-field level these 2 degrees of freedom propagate as
free particles and, in particular, since the mean-field boson
condensation temperature Tc � 4pxt � 4000 K (where
t � 400 meV and the hole doping concentration x � 0.1),
we may consider the bosons to be nearly condensed in the
low energy effective theory. The electron spectral func-
tion being a product of charge and spin propagators is then
simply determined through the spinon correlations. Map-
ping the continuum fields back onto the lattice fields we
can utilize the result for the dressed spinon propagator in
the ASL to see the effect of the gauge fluctuations on the
physical electron propagator. We find for the electron spec-
tral function [14]
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C is determined by noting

R
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though the momenta in the expressions for the spectral
functions run over all of the Brillouin zone, strictly speak-
ing they should be restricted to the vicinity of the four
Fermi points �6p�2, 6p�2� where the lattice fermions
are well approximated by massless Dirac fermions.

In Fig. 1(a) we plot the spectral functions for two mo-
menta along the zone diagonal. The main point to note is
the lack of coherent quasiparticles in the spectrum which
is in good agreement with experimental results for the
cuprates above the transition temperature. We stress here
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FIG. 1. (a) Two spectra along the �p , p� direction at q �
�0.47, 0.47� and at the node q � �0.5, 0.5� in units of p�a.
a � 0.27 is used. The solid line is obtained on smearing the
dotted line with a Gaussian of s � 10 meV. The important
point to note is the lack of a coherent quasiparticle pole which
agrees well with ARPES line shapes in the normal state of
the cuprates. (b) The solid line shows spectra at �0.5, 0.5� and
�0.47, 0.47� in the superconducting state with m � 40 meV.
The dashed line shows the delta function smeared with a
Gaussian of s � 10 meV which leads to a break in the line
shape at �0.47, 0.47� as opposed to a dip. The arrows indicate
the position of the quasiparticle pole.
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again that it is spin-charge separation combined with the
ASL phase for the spin sector that yields the above spec-
tra without the need for 1D phenomenology. The inco-
herent electron spectral function was also obtained using
1D physics in the stripe model for the high Tc super-
conductor [18].

Spectral function, superconducting state.— In marked
contrast to the normal state, the superconducting phase
has been shown to have coherent quasiparticles everywhere
in momentum space below the superconducting gap. Ex-
plaining the development of this coherent behavior out of
the incoherence of the normal state is one of the big chal-
lenges in revealing the high Tc physics.

In the spin-charge separation picture, the superconduct-
ing state can be obtained through boson condensation in
the spin pseudogap phase. The gauge field am obtains
a Higgs mass m which implies that the gauge field is in
the confinement phase [10]. Thus the spinons and holons
are confined in the superconducting phase. Because of
the confinement (which is referred to as spin-charge re-
combination) we expect a well defined quasiparticle and
a sharp peak in the electron spectral function to appear in
the superconducting state. We assume that after gaining a
mass gap due to boson condensation (or instanton effects),
the gauge effective theory is described by Eq. (2) with
Pmn �

N
8

p
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qmqn

�q2 �. In the boson conden-
sation picture, m is related to the superfluid density rs

(the density of condensed holons): N
8 m 
 rs�2mh, where

mh is the holon mass. The electron spectral function then
takes the form
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where y
2
f 	 Ef �q�2ef �q�

2Ef
and u2

f 	 Ef �q�1ef �q�
2Ef

are the well
known Bogoliubov coherence factors. In Fig. 1(b) we have
plotted the spectra for the same momenta as in Fig. 1(a).
We can clearly see the two distinct contributions to the
spectral function, the delta function quasiparticle peak and
the broad incoherent weight, respectively. An alterna-
tive interpretation of the peak-hump structure was given
in Ref. [19].

As mentioned earlier, there are different ways in which
the gauge field acquires its mass. In one picture, the gauge
field becomes massive when the bosons acquire phase co-
herence via the Higgs mechanism. This way the mass gen-
eration of the gauge field is tied to the appearance of the
superconducting order. Even without the boson conden-
sation, however, the gauge field can acquire a mass via
instantons [20], which is referred to as the confinement
regime. In this case the gauge field can be massive even
in the normal state. We stress that both boson condensa-
tion and instanton effect lead to the same phase where the
gauge field is gaped and spin and charge recombine. The
two pictures, with different dynamical properties, just rep-
resent two different limits of the same phase [10].

If the mass comes from boson condensation, then m will
be proportional to the superfluid density. If the mass arises
due to instantons, m will be the energy scale below which
the instantons become important. Thus phenomenologi-
cally we may put m � m0 1 C1rs to cover both boson
condensation and the instanton limit. In the weak coupling
limit, the mass induced by the instanton, m0, is very small
and the gauge field obtains a noticeable mass C1rs only
after boson condensation. In the strong coupling limit, the
gauge field can obtain a large mass merely through the in-
stanton effect.

In the SU�2� slave boson model, the gauge dynamics
and its coupling constant is obtained through the screen-
ing with the fermions and is of order 1. It is hard to de-
termine from theory if the confinement is caused by boson
condensation or via the instanton effect. We can see from
the expression for the spectral function (5) that the sepa-
ration of the coherent particle peak from the midpoint of
the leading edge of the incoherent background is given
by Dv �

p
E2

f �q� 1 m2 2 Ef which simplifies for the
spectrum at the node to Dv � m. Thus measuring the
above mentioned separation for the spectrum at the node
as a function of doping and superfluid density via ARPES
might give us a clue as to which mechanism is responsible
for the opening of the gap in the gauge spectrum.

Conclusion.—We have shown how the physics of
spin-charge separation, gauge fluctuations, and the alge-
braic spin liquid give a consistent way of interpreting the
Luttinger-liquid-like line shapes seen in the normal state
of the cuprates without resorting to 1D phenomenology.
We have seen how the gauge fluctuations destroy the
free spinon mean-field phase and drive it to a new fixed
point — the ASL. On entering the superconducting phase
this ASL is destroyed through the opening of a mass gap
in the gauge fluctuations via either the Higgs mechanism
or instantons. This causes spin-charge recombination.

We believe that the ASL is a more general phenomenon
where gapless excitations interact even at lowest energy
scales. This paper discussed only a particular realization
of the ASL through a slave-boson theory. It would be
interesting to find other realizations of the ASL so that
one can check which one fits experiments better.

It should be emphasized that in the spin-charge
separation picture adopted in this paper, the spectral
weight in the energy window up to 24J � 20.5 eV
(where 24J is the lower band edge of the mean-field
spinons) is mainly determined by the spinon sector (and
3873
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FIG. 2. Temperature dependence of ZUD , ZOP , rs, and r1�2
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the coherent holons) and is predicted to take the formR0
24J A2�v, �q�dv d2q��2p�2 � a 1 bx, where x is the

doping concentration, b � 1 and a � 0.1. The constant
term a arises from the incoherent holon spectral weight
[which is not included in Figs. 1(a) and 1(b)]. We can es-
timate a by noting that the total mean-field spectral weight
for the holons is stretched out from 0 to 28t � 23 eV
and normalized to 1

2 [2,3]. This is important when
extracting the doping dependence of the weight of the
quasiparticle peak from ARPES measurements.

In the boson condensation picture, m ~ rs and the
weight Z of the sharp quasiparticle peak can be deter-
mined from the superfluid density rs, Z ~ x� rs�2a . From
this we can determine the temperature dependence of
the weight of the quasiparticle peak. Furthermore, the
T � 0 weight is Z ~ x112a . Under the instanton picture,
m � m0 and we have Z ~ x if m0 ¿ C1rs.

In Fig. 2 we compare Z�T�Tc� for underdoped Bi2Sr2-
Ca1Cu2O81d (Bi2212) (taken from [9]), optimally doped

Bi2212 (taken from [8]) with r2a
s �T�Tc� � r

1�2
s �T�Tc�

[rs�ab� for optimally doped Bi2212 taken from [21];
we wished that Z and rs were obtained from the same
sample]. We observe that Z does not go to zero at Tc

and is larger in the underdoped case (with a small T
dependence above Tc) which points to mass generation
via instantons. Below Tc we can see how the weight
approaches Z ~ x� rs�2a , where x is independent of
temperature which suggests that the main contribution
to the mass arises through the Higgs mechanism in this
temperature regime.

Finally let us note that the behavior of the holons is
still poorly understood. In this paper we have assumed
that the holons have a small energy scale of order Tc in
order to carry out our calculations. Although the normal
state electron spectral function may not depend on the de-
3874
tails of the holons, many other physical properties, such as
normal state charge transport and the transition to the su-
perconducting state, require a good understanding of these
degrees of freedom.
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Note added.—After this paper was submitted, a related
work appeared [22].
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