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Coherence and Partial Coherence in Interacting Electron Systems
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We study coherence of electron transport through interacting quantum dots and discuss the relation of
the coherent part to the flux-sensitive conductance for three different types of Aharonov-Bohm interfer-
ometers. Contributions to transport in first and second order in the intrinsic linewidth of the dot levels
are addressed in detail. We predict an asymmetry of the interference signal around resonance peaks
as a consequence of incoherence associated with spin-flip processes. Furthermore, we show by strict
calculation that first-order contributions can be partially or even fully coherent. This contrasts with the
sequential-tunneling picture which describes first-order transport as a sequence of incoherent processes.
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Introduction.—The study of transport through quantum
dots (QDs) revealed interesting phenomena such as reso-
nant tunneling, Coulomb blockade, and the Kondo effect.
The measurement of the current, however, provides no
information whether this transport occurs coherently or
incoherently. To approach this question the QD can be
embedded in an Aharonov-Bohm (AB) geometry [1–7].
A magnetic-flux sensitivity of the total current has been
observed [1,6]. Depending on the setup, the phase of the
oscillations showed either a jump as a function of the gate
voltage or a continuous phase shift.

The transmission probability Tdot
s �v� through a QD for

incoming electrons with energy v and spin s is defined
by its relation to the linear conductance,

≠I
≠V

Ç
V�0

� 2
e2

h

X
s

Z
dv Ts�v�f 0�v� . (1)

In the absence of electron-electron interaction, transport
can be described within a scattering approach [8,9]
with a transmission amplitude tdot

s �v� ~ Gret
s,LR�v� and

Tdot
s �v� � jtdot

s �v�j2. The Green’s function Gret
s,LR�v�

involves Fermi operators of the left and the right electron
reservoirs. It is, then, easy to show that transport through
the QD is fully coherent. At low temperature it is possible
to tune the transmission amplitude of a reference arm
and the AB flux such that the total transmission is zero,
corresponding to a fully destructive interference. In the
presence of electron-electron interaction, though, this
approach fails. The transmission probability Tdot

s �v� can
no longer be obtained from tdot

s �v� introduced above but
has to be determined using Green’s function techniques
for interacting systems [10–12]. Thus, the question of
whether and how the coherent part of the transport through
an interacting QD can be identified is nontrivial. It will
be addressed in this Letter.

First we use intuitive arguments to distinguish coher-
ent from incoherent cotunneling through a noninteracting
and an interacting QD. Then, for a quantitative analysis,
we develop general expressions for the flux-sensitive trans-
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mission through an interferometer containing either one or
two QDs. We derive the intuitively obvious result that the
coherence of cotunneling may be spoiled by spin-flip pro-
cesses. They give rise to an incoherence-induced asymme-
try of the amplitude of the interference signal. We propose
a symmetric AB interferometer using two QDs to show
that first-order transport can be partially or even fully co-
herent, in contrast to the description of first-order transport
within the language of incoherent sequential tunneling.

We consider a single-level QD with level energy e,
measured from the Fermi energy of the leads. The Ham-
iltonian H � HL 1 HR 1 HD 1 HT contains Hr �P

ks ekra
y
ksraksr for the left and the right lead, r � L�R.

The isolated dot is described by HD � e
P

s ns 1 Un"n#,
where ns � cy

scs , and HT �
P

ksr �tra
y
ksrcs 1 H.c.�

models tunneling between dot and leads (we neglect
the energy dependence of the tunnel matrix elements
tL�R). Because of tunneling the dot level acquires a finite
linewidth G � GL 1 GR with GL�R � 2pjtL�Rj

2NL�R

where NL�R is the density of states in the leads. The
electron-electron interaction is accounted for by the
charging energy U � 2EC for double occupancy. To
keep the discussion simple we choose U � 0 for the
noninteracting case and U � ` for an interacting QD.

Transport through noninteracting and interacting
QDs.— In the absence of interaction we can use the
scattering formalism with the transmission amplitude

tdot
s �v� � i

p
GLGR Gret

s �v� , (2)

where the dot Green’s function Gret
s �v� � 1��v 2 e 1

iG�2� is the Fourier transform of 2iQ�t� ��cs�t�, cy
s�0���.

The transmission probability Tdot
s �v� � jtdot

s �v�j2 �
GLGR���v 2 e�2 1 �G�2�2	 reflects resonant tunneling,
which is fully coherent to all orders in G.

We identify a contribution to the transport through
a QD as coherent if by adding a reference trajectory
fully destructive interference can be achieved. Inter-
action of the dot electrons with an external bath (e.g.,
phonons) destroys coherence since interference with a
© 2001 The American Physical Society 3855
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reference trajectory is no longer possible: the transmitted
electron has changed its state or, equivalently [13], a
trace in the environment is left. Coherence can be also
lost in interacting QDs by flipping both the spin of the
transmitted electron and the QD.

Away from resonance, jej ¿ kBT , G, transport is domi-
nated by cotunneling [14,15]. There are three different
types of cotunneling processes (for U � `): (i) an electron
enters the QD, leading to a virtual occupancy, and then
leaves it to the other side. (ii) An electron leaves the QD,
and an electron with the same spin enters. (iii) An electron
leaves the QD, and an electron with opposite spin enters.
Process (iii) is elastic in the sense that the energy of the
QD has not changed. It is incoherent, though, since the
spin in the QD has flipped.

The transmission, defined by Eq. (1), through a single-
level QD can be obtained [10–12] from

Tdot
s �v� � 2

2GLGR

G
ImGret

s �v� . (3)

For cotunneling, the transmission probabilities of elec-
trons with energy v near the Fermi level of the leads
can also be obtained by calculating the transition rate in
second-order perturbation theory and multiplying it with
the probabilities Px to find the system in the correspond-
ing initial state x . For an incoming electron with spin
up the transmission probabilities are PxGLGR Re�1��v 2

e 1 i01�2	 with x � 0, ", # for case (i), (ii), and (iii),
respectively. Since P0 1 P" 1 P# � 1 and P0 1 Ps �
1��1 1 f�e�	 in equilibrium, where f�e� is the Fermi
function, we find Tdot

s �v� � Tdot,coh
s �v� 1 Tdot,incoh

s �v�
with [17]

Tdot
s �v� � Re

GLGR

�v 2 e 1 i01�2 , (4)

Tdot,coh
s �v� �

Tdot
s �v�

1 1 f�e�
. (5)

We now show that Eq. (2) is not a good definition
for a transmission amplitude for interacting QDs. From
tdot
s �v� � i�P0 1 P"�

p
GLGR��v 2 e 1 i01� we get

jtdot
s �v�j2 � Tdot

s �v���1 1 f�e�	2 which not only does
not yield the total transmission through the dot but also
differs from the coherent part of the transmission as well:
there is no direct physical meaning of the expression
jtdot

s �v�j2.
A generalization of the scattering approach has been

proposed [18] which is compatible with the physical quan-
tities expressed by Eqs. (4) and (5). While this general-
ization is physically motivated, it gives no recipe how to
calculate the transmission amplitudes explicitly in a given
order in G.
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For U � 0, there are three more cotunneling processes.
They involve double occupancy as an intermediate or ini-
tial state. After summation, the spin-flip processes can-
cel each other. In this case Tdot,coh

s �v� � jtdot
s �v�j2 �

Tdot
s �v� � Re�GLGR��v 2 e 1 i01�2	.
Interferometry with a single QD.—To support the re-

sults of our intuitive picture, we analyze quantitatively AB
interferometers which contain one QD. The total trans-
mission probability T tot

s �v� through the AB interferome-
ter is the sum of three parts: Tdot

s �v� and T ref � jtrefj2 for
the transmission through the dot and reference arm (the
latter is independent of energy v and spin s), and the
flux-dependent interference part T flux

s �v�. Two kinds of
geometries have been considered, one using a two-terminal
setup [1] and the other an open geometry [6]. The two
geometries have in common that numerous channels (char-
acterized by the energy v and spin s) are probed simulta-
neously, hence the interference signal is the sum of many
contributions. To achieve fully destructive interference one
needs to adjust the amplitude of the reference arm such that
Tdot

s �v� � T ref for all contributing energies.
We relate the flux-dependent linear conductance to the

dot Green’s function for the two-terminal geometry. To
model the transmission through the reference arm we add
to the Hamiltonian a term Href �

P
kqs�t̃ay

ksRaqsL 1

H.c.� with 2p t̃
p

NLNR � jtrefjeiw . The AB flux F enters
via w � 2pFe�h (in a gauge that leaves the tunnel
Hamiltonian of the QD F independent). The current from
the right lead is given by the time derivative of the electron
number, I � ed�n̂R��dt � i�e�h̄� ��Ĥ, n̂R	�. The latter
expression yields Green’s functions which involve Fermi
operators of the right lead. Using the Keldysh technique
we relate these to the dot Green’s function. After collect-
ing all terms and using current conservation we find [19]
the surprisingly simple relation for linear response and
first order in G and tref (i.e., higher harmonics in w are
dropped)

T flux,a
s �v� � 2

p
GLGR jtrefj cosw ReGret

s �v� . (6)

For the second kind of interferometer it was shown [7]
(under the condition that the open geometry ensures that
the reference arm and the applied bias voltage do not affect
the QD) that

T flux,b
s �v� � 2

p
GLGR jtrefjRe�e2iuGret

s �v�	 (7)

with u � w 1 Du, where Du is determined by the
specifics of the interferometer.

While Eqs. (6) and (7) are almost self-evident in the
noninteracting case, it was not a priori clear that they
should hold for interacting systems as well.

According to Eq. (6) the conductance is always extremal
at w � 0. Such a “phase locking” does not take place
in the open-geometry setup: the AB phase at which the
transmission is extremal can be continuously varied by
tuning the energy of the dot level via a gate electrode.
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In the absence of interaction the flux-sensitive interfer-
ence part for the latter geometry is

T flux,b
s �v� � 2jtrefjRe

∑
e2iu

p
GLGR

v 2 e 1 iG�2

∏
. (8)

At low temperature, kBT ø max�G, jej�, we can adjust
tref such that Tdot

s �v� � T ref for all contributing energies
(up to corrections of order kBT�G and kBT�jej) which
yields [20]

≠I tot

≠V

Ç
V�0

~ 4
e2

h
GLGR

e2 1 �G�2�2 �1 2 cos�u 2 u0�	 . (9)

Here 0 , u0 � arctan�G�2e� , p . There is a value of
the flux at which full destructive interference is achieved.
When kBT * min�G, jej�, the matching of all the trans-
mission amplitudes does not work, and full destructive in-
terference is not achieved.

Let us now consider cotunneling (when jej ¿ G, kBT
applies). Expansion of Eq. (9) leads to

≠Itot

≠V

Ç
V�0

~ 4
e2

h
GLGR

e2

∑
1 2

e

jej
cosu

∏
(10)

showing that cotunneling in the noninteracting case is fully
coherent. In the interacting case we find

≠Itot

≠V

Ç
V�0

~ 4
e2

h
GLGR

e2

∑
1 2

e

jej

cos u

1 1 f�e�

∏
. (11)

For the two-terminal interferometer we obtain exactly the
same as Eqs. (10) and (11) but with u replaced by w and
the proportionality replaced by the equality sign.

The factor 1��1 1 f�e�	 indicates an “interaction-
induced” asymmetry associated with spin-flip cotunnel-
ing, in accordance with Eq. (5). We, therefore, conclude
that both kinds of interferometers discussed so far are
suitable to distinguish coherent from incoherent cotun-
neling through a QD. Moreover, this asymmetry is an
efficient and rather robust probe of the spin configuration
of the QD (whether it has total spin 0 or 1�2). The
same information can be retrieved by the Kondo effect,
however, under more demanding experimental conditions.

In most experimental situations, the number of dot lev-
els participating in the transport exceeds 1. At a dis-
tance jej away from resonance, in the cotunneling regime,
there are 2N relevant levels with N 
 2jej�D 1 1 (here
kBT , G ø jej , EC , the mean level spacing is D, and the
factor 2 represents spin degeneracy). The number of lev-
els within the range defined by temperature is 2M with
M 
 2kBT�D 1 1. The ratio of the number of coher-
ent channels to the total number of transmission channels
is �N 1 1���N 1 4M2� in the valley where the electron
number on the QD is even and N��N 1 4M2� when it is
odd [19]. As a consequence the coherent contribution van-
ishes for kBT ¿

p
jejD�8. Furthermore, the asymmetry

between adjacent valleys diminishes for jej ¿ D�2.
What about first-order transport, which dominates for

kBT ¿ G, jej? The energy spread of electrons going
through the reference arm is kBT , while the width of the
resonance through the QD is G; hence, the matching of
all the transmission amplitudes to the reference ampli-
tude does not work, and full destructive interference is
not achieved. There is, however, at least partial coherence
to lowest order in G. This manifestly contrasts with the
sequential-tunneling picture which describes lowest-order
transport as a sequence of incoherent tunneling processes.
Thus, it does not take into account the coherence of the
transmitted and reference beam, although it produces the
correct transmission probability through a QD in the ab-
sence of a reference arm.

Interferometry with two QDs.—The conceptual diffi-
culty to address first-order transport in the above geome-
tries is that the temperature has to be on the one hand
large, yet, on the other hand, it has to be small to allow
for a destructive interference of all energy components si-
multaneously. To circumvent this problem, we consider a
two-terminal AB interferometer with two QDs, one in each
arm. Then, fully destructive interference (in the absence
of interaction) is feasible at high temperatures. In related
work, resonant tunneling (in the absence of interaction and
flux) [21] and cotunneling [22,23] has been studied in the
same geometry [24].

Each dot is described by the Hamiltonian introduced
above for a single QD. We choose a completely symmetric
geometry, and we assume kBT ¿ G, je1j, je2j as well as
G ¿ je1 2 e2j, where e1,2 is the energy of the level in QD
1 and 2. In this regime lowest-order transport dominates,
and we can set e � e1 � e2. To model the enclosed flux
we attach a phase factor eiw�4 to the tunnel matrix ele-
ments tR,QD1 and tL,QD2, and e2iw�4 to tL,QD1 and tR,QD2.
The system is equivalent to one QD with two levels (each
of them spin degenerate) with w-dependent tunnel matrix
elements. The total current is [10]
I tot �
ie
2h

Z
dv tr��GLfL 2 GRfR	G. 1 �GL�1 2 fL� 2 GR�1 2 fR�	G,� (12)

with GL �
G

2 � 1
e2iw�2

e1iw�2

1 �dss0 and GR � �GL��. The matrices account for the two QDs. Expansion up to linear order
in the transport voltage V and in the intrinsic linewidth G yields

≠Itot

≠V

Ç
V�0

� 2
4pe2

h
G

Z
dv

Ω
f 0�v�A11�v� 2

sin�w�2�
p

∑
f�v�

≠G.
12

≠�eV �
1 �1 2 f�v�	

≠G,
12

≠�eV �

∏æ
(13)

with G.
12�v� � G,

12�v� � 2piP1
2d�v 2 e�, and A11�v� � d�v 2 e� in the absence and A11�v� � d�v 2 e���1 1

f�e�	 in the presence of interaction. The off-diagonal density-matrix elements P1
2 � �j2� �1j� vanish in equilibrium, but
3857
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they are present for finite bias voltages. To determine
them we use a real-time transport theory developed in
Refs. [11,12] and solve a generalized master equation.
We find [19] at V � 0 and in zeroth order in G that
≠P1

2�≠�eV � � 2�i�2�f 0�e� sin�w�2� in the absence and
≠P1

2�≠�eV � � 2�i�2�f 0�e���1 1 f�e�	3 sin�w�2� in the
presence of interaction. As a consequence, in the absence
of an AB flux, only equilibrium Green’s functions enter
Eq. (13). In the presence of flux, however, it is crucial
to first account for finite voltage nonequilibrium Green’s
functions, and take the zero-bias limit only at the end.

We find for the noninteracting case

≠Itot

≠V

Ç
V�0

� 2
≠Idot

≠V

Ç
V�0

3 �1 2 sin2�w�2�	 (14)

with �≠Idot�≠V �jV�0 � 2�pe2�h�Gf 0�e� being the con-
ductance through a single QD. At jsin�w�2�j � 1 the to-
tal current vanishes, indicating that lowest-order transport
is fully coherent. This completely contrasts the picture of
incoherent sequential tunneling. In the absence of interac-
tion, however, the transport should be fully coherent. For
the simple limit U � 0 we can rederive Eq. (14) by using
Eq. (7) of Ref. [10], determining the dot Green’s function
by an equation-of-motion approach, and expanding the re-
sult up to first order in G.

In the presence of interaction we obtain

≠I tot

≠V

Ç
V�0

� 2
≠Idot

≠V

Ç
V�0

3

∑
1 2

sin2�w�2�
�1 1 f�e�	2

∏
(15)

with �≠Idot�≠V �jV�0 � 2�pe2�h�Gf 0�e���1 1 f�e�	.
We point out that the total conductance is always smaller

than the sum of the conductances through the QDs taken
apart. The factor 1��1 1 f�e�	2 yields an interaction-
induced asymmetry in the ratio of coherent to total trans-
port around a conductance peak.

Conclusion.—We have shown that interactions lead to
an asymmetric suppression of destructive interference. In
second-order transport we related this explicitly to spin-flip
processes which give rise to an incoherent contribution to
the transmission probability. Even in first-order transport,
the transmission is at least partially coherent. This state-
ment is probably supported by the experiment of Yacoby
et al. [1] in which AB oscillations were observed in that
regime.

Our systematic analysis of how to describe the coher-
ent components of physical observables in the presence of
interaction (which is different from the way they can be
accounted for in the absence of interaction) may pertain to
other problems, such as the interpretation of the transmis-
sion phase through an AB interferometer [1,6].
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