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Metal-Insulator Crossover in Superconducting Cuprates in Strong Magnetic Fields
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The metal-insulator crossover of the in-plane resistivity upon temperature decrease, recently observed
in several classes of cuprate superconductors, when a strong magnetic field suppresses the supercon-
ductivity, is explained using the U�1� 3 SU�2� Chern-Simons gauge field theory. The origin of this
crossover is the same as that for a similar phenomenon observed in heavily underdoped cuprates without
magnetic field. It is due to the interplay between the diffusive motion of the charge carriers and the
“peculiar” localization effect due to short-range antiferromagnetic order. We also calculate the in-plane
transverse magnetoresistance which is in fairly good agreement with available experimental data.
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The in-plane resistivity in heavily underdoped samples
of cuprates [in particular, La22xSrxCuO4 (LSCO)] exhibits
a minimum and a crossover from metallic to insulating
behavior upon the temperature decrease [1]. Recently a
similar crossover was observed in several classes of super-
conducting cuprates [2–5] when a strong magnetic field
(up to 60 T) suppresses the superconductivity. The “ob-
vious” interpretation in terms of two-dimensional (2D)
localization or 2D insulator-superconductor transition is
ruled out, as the sheet resistance, defined as rsh � rab�a,
where a is the interlayer distance, at the crossover point is
between 1�25 to 1�12 in units of h�e2 [2–4], or, using a
free electron model, the estimated product kFl, where kF

is the Fermi momentum and l is the mean free path, is be-
tween 12 and 25. The insulating ground state persists up
to optimal doping in LSCO [2] and in electron-doped su-
perconductors Pr22xCexCuO4 [3], while in newly studied
Bi2Sr22xLaxCuO61d (La-doped Bi-2201) it persists only
up to 1�8 hole-doping without showing any signature of
stripe formation. Thus ascribing this metal-insulator (MI)
crossover to a quantum critical point related to charge den-
sity instability [6] is open to objections [7]. There were
several attempts to interpret the insulating ground state
in doped cuprates using various arguments on non-Fermi
liquid behavior [8]. However, the crossover phenome-
non as temperature varies has not been addressed up to
now, to the best of our knowledge. It was thought ear-
lier that the MI crossover in the absence of magnetic field
[1] and that induced by magnetic field is of different ori-
gin (the sheet resistance in the first case was substantially
higher) [2]. This is doubtful, because the recent experi-
ments on YBa2Cu3O72y (YBCO) show a MI crossover in
nonsuperconducting compounds in the absence of mag-
netic field [9], and the same type of MI crossover (with
comparable sheet resistance at the crossover) in the super-
conducting compounds of the same series doped with Zn
in the presence of magnetic field [5]. We believe the two
crossover phenomena are of the same origin. We have
used the U�1� 3 SU�2� Chern-Simons (CS) approach to
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the t-J model, proposed by us earlier [10] to explain the
MI crossover in heavily underdoped cuprates in the ab-
sence of magnetic field [11]. In this Letter we generalize
our formalism to include the effect of magnetic field and
show that such a MI crossover is a universal feature of
doped cuprates, and it is due to a “peculiar charge local-
ization” effect (using the wording of Ref. [4]), resulting
from the interplay of the spin-excitation gap [correspond-
ing to short-range antiferromagnetic order (SRAFO)] and
the holon induced anomalous dissipation. Moreover, we
show that the observed large positive in-plane transverse
magnetoresistance (MR) at low temperatures [12,13] can
be semiquantitatively explained within this formalism.

The U�1� 3 SU�2� CS gauge field approach is a par-
ticular scheme of slave-particle formalism to treat the t-J
model based on an exact identity [14], introducing a U�1�
field gauging the global charge symmetry and a SU�2�
field gauging the global spin symmetry, both with CS
actions. Using an optimization procedure of free energy
[10], a careful mean field (MF) approximation gives the
following results: The U�1� gauge field for low doping
d develops a p flux per plaquette converting holons
into Dirac fermions with a Fermi energy eF � td. The
holons induce a vortex structure in the MF configura-
tions of the SU�2� gauge field, with vortices centered
at the holon positions. These dressed holons in turn
are seen as slowly moving impurities by spin waves
giving rise to a spinon mass ms �

p
djlndj. Notice that

this feedback is self-consistent because for low d we
have eF � td ø es � J

p
djlndj. We use J � 0.1 eV,

t�J � 3 in our numerical computations. Because of a
special choice of “gauge fixing” (using the Néel gauge) the
SU�2� gauge field becomes physical, describing the spin
fluctuations. The spinon action is given by a nonlinear s

model with a mass term (spinon gap) which in the CP1

representation yields a new self-generated U�1� gauge
field A coupling holons and spinons [this field is analo-
gous to the U�1� gauge field in the standard slave-particle
approaches [15,16] ]. Because of coupling to holons
© 2001 The American Physical Society 3831
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(fermions in our approach), this gauge field acquires an
anomalous dissipation term, the “Reizer singularity” [17],
which dominates the low-energy action for the transverse
component of the gauge field AT . For v, j �qj, v�j �qj � 0
we have �ATAT � �v, �q� � �xj �qj2 1 ik v

j �qj �
21, where

x � t�d is the diamagnetic susceptibility and k � d is
the Landau damping. The interplay of the two different
energy scales, the spinon gap and the holon induced
anomalous dissipation, is the key factor in our interpreta-
tion of the MI crossover [11]. For the temporal component
in the same limit, we have �A0A0� �v, �q� � �g 1 vp�21,
where g is the fermion density of states and vp is the
plasmon gap.

Now we consider the introduction of a magnetic field
H perpendicular to the plane. The Ioffe-Larkin rule [18],
R � Rs 1 Rh, i.e., the observed resistivity is the sum
3832
of the holon and spinon contributions, can be general-
ized to this case. The external electromagnetic potential
Ae.m., corresponding to the constant magnetic field H, can
couple with coefficient 2´ to spinons and 1 2 ´ to holons.
In principle, 0 # ´ # 1 is arbitrary. However, to be con-
sistent with the requirement that the physical inverse mag-
netic susceptibility should be the sum of the inverse of
that of holons and spinons, i.e., x21 � �x�

s �21 1 �x�
h�21,

where x�
s and x

�
h are the renormalized spinon and holon

susceptibility, respectively (this relation can be derived
in the same way as the Ioffe-Larkin rule), we find ´ �
x

�
h��x�

h 1 x�
s �. This value was argued earlier using vari-

ational considerations [19]. Replacing these quantities
by unrenormalized values, we find 1 2 ´ � xs��xh 1

xs� � J
t

p
d�jlndj ø 1. In the Coulomb gauge A0

e.m. � 0,
the effective action for the gauge field A can be written as
Seff�A� �
Z

dx0 d2x

∑
i
2

�A0�P0
h 1 P0

s�A0 1 	AT 1 �1 2 ´�Ae.m.
P�
h 	AT 1 �1 2 ´�Ae.m.


1 �AT 2 ´Ae.m.�P�
s �AT 2 ´Ae.m.�� 1

ish�H�
2p

A0eij≠
iAj

∏
, (1)
where P
0,�
h , P0,�

s are unrenormalized polarization bubbles
due to holons and spinons, respectively, and sh�H� is the
Hall conductivity due to holons. Note Ae.m. appears in two
places in this low-energy effective action: one is simply a
shift of the transverse component of the gauge field AT by
�1 2 ´�Ae.m. and 2´Ae.m. corresponding to the minimal
coupling to holons and spinons, respectively, while the
other is a CS term due to parity breaking induced by H.

As remarked in [19], the leading effect of the integra-
tion over A0 is the renormalization of the diamagnetic sus-

ceptibility: x ! x�H� � x 1
s

2
h�H�

4p2g in the AT effective
action. The holon contribution Rh can be evaluated using
the Boltzmann equation, taking into account the classical
cyclotron effect, as in [19], obtaining

Rh � R0
h

∑
1 1

µ
�1 2 ´�Ht

mh

∂2∏
,

R0
h �

mh

8
1
t

� d

∑
1

eFtimp
1

µ
T
eF

∂4�3∏
,

(2)

where t is the transport relaxation time, timp is
the impurity scattering time, and mh � d�t is the
holon mass. The spinon contribution Rs is evaluated
here using the Kubo formula for the spinon current:
Rs � limv!0 v	ImP�

s �v�
21, where P�
s denotes the

transverse polarization bubble at �q � 0, renormalized
by gauge fluctuations. At large scales, for x0 ¿ j �xj,
P�

s �x� is approximately given by �≠mG�x jA�≠mG�x jA��,
where � � denotes the A-expectation value and G�x jA� is
the spinon propagator. Using the Fradkin representation
[11,20] it can be transformed into a gauge invariant form
�≠mG�x jF�≠mG�x jF��, where G�x jF� in terms of a path
integral over 3-velocities, fm�t� � �qm�t�, m � 0, 1, 2, is
given by

G�x jF� � i
Z `

0
ds e2im2

s s
Z

Dfm e
i

4

Rs

0
f2

m�t� dt

3
Z

d3p eipx2ip2s

3 eiQij� p,s,f j s0,l� 	Fij �p,s j s0,l�1eij´H
 (3)

with

Qij�p, s, f j s0, l� 	#
 �
Z 1

0
dl l

Z s

0
ds0

Z s0

0
ds00

3 	fi�s0� 2 2pi


3 	fj�s00� 2 2pj
 	#
 (4)

and

Fij�p, s j s0, l� � Fij

µ
x 1 l

Z s0

0
ds00 f�s00� 2 2ps

∂
,

Fij � ≠iAj 2 ≠jAi .
(5)

After integration over AT , using the effective action, and
integration over the 3-velocities in the Gaussian approxi-
mation, and over p and s by saddle point for low T, one
obtains at large scales

P�
s �x� �

"
≠

≠xm

√
e

2i
q

m22 T

x�H�
f�a�1 a2´2H2

3q2
0

p
x2

02j �xj2

3 e
2 T

4x�H�
q2

0g�a�
�x2

0
2j �xj2�

m2
1q

�x2
0 2 j �xj2�

!#2

, (6)

where a �
q0j�xj

2 ; q0 is the momentum scale associated
with the anomalous skin effect due to Reizer singularity:
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q0 � � d2T
t �1�3. f and g are functions describing the

effect of gauge fluctuations and for a real argument, f is
monotonically increasing, vanishing quadratically near the
origin and g is monotonically decreasing vanishing at large
argument. (See [21] for explicit expressions.) The integra-
tion over j �xj and x0 appearing in the Fourier transformation
are evaluated by saddle point for j �xj, at large x0, and with
scale renormalization by principal part evaluation for x0

[11,21]. The integrals are dominated by a complex
saddle point at j �xj � 2q21

0 ei p

4 for x�H�q0jms�T , H�j &

T , Im	m2
s �T , H�
 & m2

s , where

m2
s �T , H� � m2

s 2 i

µ
cT

x�H�
2

´2H2

3q2
0

∂
, (7)

with c � 2if�eip�4�, a constant with real part �3 and a
small imaginary part. For the range of physical param-
eters considered here (H & 100 T), these bounds gave a
temperature range validity lying between a few tens and a
few hundreds of degrees.

The saddle point produces the following effects: it in-
duces “renormalization” of the spinon mass yielding a
T and H dependent damping: m2

s ! m2
s �T , H�; it gives

rise to an attraction between spinon and antispinon lead-
ing to the formation of a damped spin wave; it intro-
duces a multiplicative renormalization of the correlation
functions which for Rs is given by Z�T , H� 	m2

s �T , H�

1
8 ,

where Z�T , H� � �c0 T
x�H�q

23
0 2

2
3´2H2q25

0 �1�2 with c0 a
new constant �f 00�eip�4�.

The final result in the range of T described above is
given by

Rs � Z�T , H�
jms�T , H�j1�4

sin Q�T ,H�
4

, (8)

where ms�T , H� � jms�T , H�je2iQ�T ,H�. The basic fea-
tures of our formulas can be summarized as follows: for
low T , the effect of the spinon gap is dominating (Q & 0),
leading to an insulating behavior; at higher temperatures
one finds a metallic behavior due to the dissipation in-
duced by gauge fluctuations, contained in jms�T , H�j, that
becomes the dominant effect. Therefore a MI crossover
is recovered, decreasing the temperature. The minimum
of R as a function of T , TMI�d, H� is decreasing with
d and increasing with H {see the MR curve 	R�H� 2

R�0�
�R�0� in Fig. 1}, in agreement with experiment [5].
In the absence of magnetic field the crossover is deter-
mined by the interplay between m2

s � j22 and T�x �
Tmh � l22, with j the magnetic correlation length and
l the thermal de Broglie wavelength. When l # j, the
“peculiar” localization effect due to SRAFO is not “felt,”
and a metallic behavior is observed. In the opposite limit
l ¿ j the cuprate is insulating. The external magnetic
field effectively reduces the thermal energy, or increases
the thermal wavelength, so the crossover temperature goes
up. The resistivity is diverging at T �

´2H2x�H�
3cq2

0
, which
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FIG. 1. The calculated magnetoresistance for cases when the
quantum effects related to sh�H� are strong, for doping d �
0.05. It becomes negative near the minimum which itself shifts
to higher temperatures upon the field increase.

approaches T � 0 as H vanishes. This divergence is lying
outside the region of validity of our formulas and should
be considered as an artifact.

However, the shift in MI crossover temperature leads to
a large positive (in-plane transverse) MR at low T which is
our main new result, and it was absent in the earlier treat-
ments [19]. The derived MR scales quadratically with H
(see Fig. 2) in agreement, in particular, with data on LSCO
[12,13], away from the doping d � 1�8 where the stripe
effects dominate. As remarked in [19], the shift of x in-
duced by the CS term reduces the damping and the H2 term
due to minimal coupling acts in the same direction. In the
region of T where dissipation dominates this induces a re-
duction of resistivity, a tendency contrasted by the classical
cyclotron effect. One then has two possible types of MR
curves: one is always positive but it exhibits a knee below
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FIG. 2. The calculated field dependence of the magnetoresis-
tance for doping d � 0.075, in comparison with experimental
data on La1.925Sr0.075CuO41e (inset), taken from Ref. [13].
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FIG. 3. The calculated temperature dependence of the mag-
netoresistance for doping d � 0.075, in comparison with
experimental data on La1.925Sr0.075CuO41e (inset), taken from
Ref. [13].

the crossover temperature between the mass gap and the
dissipation dominated regions (see Fig. 3). This behavior
can be compared with the one observed in LSCO reported
in [13] and we find reasonably good agreement. If, on the
contrary, the quantum effects related to sh�H� are suffi-
ciently strong, a minimum develops, eventually leading to
a negative MR in some region around it. This is illustrated
in Fig. 1. We should point out that the large positive MR at
low temperatures is foreseen in this theory for both cases.

A comment on the limit H � 0 is in order, where we
recover the results of [10], in particular, m2

s �T , 0� � m2
s 2

icT�x , Z�T , 0� � 1
p

d
. In this limit the resistivity exhibits

an inflection point at temperature T��d� � 200 300 K
(found also in the experimental curves), above which the
theoretical curves start to deviate strongly from the experi-
mental data. We propose to interpret this inflection point as
a midpoint of a crossover to a new “phase” where our MF
treatment is not valid anymore. If we identify our T��d�
with the crossover temperature T� found in experiments,
both MI crossover temperature TMI�d� � TMI �d, 0� and
T��d� are found in reasonable agreement with experimen-
tal data (in the range 0.02 & d & 0.08), due to a deli-
cate cancellation of doping dependences: T

xm2
s

� Td

tdjlndj �
T

t lnd . Rs in this limit can be written in terms of a di-
mensionless variable x � cT�xm2

s apart from an over-
all factor

p
jlndj. Hence, if we neglect the contribution

�T4�3 due to holons and define a “normalized resistivity”
by R̃ � 	R 2 R�TMI �
�	R�T�� 2 R�TMI �
, this is a func-
tion only of x, thus exhibiting a “universal” behavior, as
observed in YBCO [22].

As a final remark it might be worthwhile to notice that
the same U�1� 3 SU�2� approach is able to reproduce
qualitatively [10,23] the behavior of the spin lattice relaxa-
tion rate �1�T1T �63 found in underdoped YBCO [24] and a
3834
structure of Fermi arcs around � p

2 , p

2 ) in the spectral den-
sity detected by ARPES [25].
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