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Overcritical Rotation of a Trapped Bose-Einstein Condensate
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The rotational motion of an interacting Bose-Einstein condensate confined by a harmonic trap is in-
vestigated by solving the hydrodynamic equations of superfluids, with the irrotationality constraint for
the velocity field. We point out the occurrence of an overcritical branch where the system can rotate with
angular velocity larger than the oscillator frequencies. We show that in the case of isotropic trapping
the system exhibits a bifurcation from an axisymmetric to a triaxial configuration, as a consequence of
the interatomic forces. The dynamical stability of the rotational motion with respect to the dipole and

quadrupole oscillations is explicitly discussed.
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An important peculiarity of harmonic trapping is the ex-
istence of a critical angular velocity, fixed by the oscillator
frequencies, above which no system can rotate in condi-
tions of thermal equilibrium. The main purpose of this pa-
per is to show that a trapped Bose-Einstein condensate at
very low temperature can rotate at angular velocities higher
than the oscillator frequencies in a regime of dynamical
equilibrium. The occurrence of overcritical rotations is a
rather well-established feature in classical mechanics (see,
for example, [1,2]) and is the result of the crucial role
played by the Coriolis force. It is therefore interesting to
understand the new features exhibited by rotating super-
fluids and in particular the role played by Bose-Einstein
condensation. The rotational behavior of superfluids is, in
fact, deeply influenced by the constraint of irrotationality
which makes it impossible for such systems to rotate in a
rigid way. Spectacular consequences of irrotationality are
the quenching of the moment of inertia with respect to the
rigid value and the occurrence of quantized vortices [3].
Both of these effects have been recently observed in dilute
gases confined in harmonic traps [4—6].

We start our analysis by considering a dilute Bose gas
interacting with repulsive forces at zero temperature. For
large systems, where the Thomas-Fermi approximation ap-
plies, the equations of motion are well described by the
so-called hydrodynamic theory of superfluids [7,8]. If the
anisotropic harmonic confining potential rotates with an-
gular velocity () it is convenient to write these equations
in the corotating frame, where they take the form
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In the above equations Ve (r) = M(w2x? + w§y2 +
w2z%)/2 is the oscillator potential providing the external
confinement, for which we will choose w, > w,. Notice
that, in the corotating frame, Ve (r) does not depend on
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time. Furthermore wo.(p) = gp is the chemical potential
of the uniform gas, where g = 47%%a/M is the coupling
constant fixed by the s-wave scattering length a and v
is the velocity field in the laboratory frame, expressed in
terms of the coordinates in the rotating frame. It satisfies
the irrotationality constraint. Equations (1) and (2) can
also be applied to a trapped Fermi superfluid, where the
expression for wioc(p) takes, of course, a different form.
The stationary solutions in the rotating frame are obtained
by imposing the conditions dp/dt = 0 and dv/dr = 0.
Let us look for solutions of the form [9]

v = aV(xy) 3)

for the velocity field, where « is a parameter that will be
determined later. Choice (3) rules out the description of
vortical configurations. Vortices cannot be in any case de-
scribed by the hydrodynamic equations (1) and (2) since
they require the use of more microscopic approaches, such
as Gross-Pitaevskii theory for the order parameter, which
accounts for the behavior of the system at distances of the
order of the healing length [8,10]. Since the critical fre-
quency needed to generate a stable vortex becomes smaller
and smaller as the number of atoms increases [11], the so-
lutions discussed in this paper correspond, in general, to
metastable configurations.

By substituting expression (3) into Eq. (2), one imme-
diately finds that the resulting equilibrium density is given
by the parabolic shape
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also in the presence of the rotation. Of course Eq. (4)
defines the density only in the region where p > 0. Else-
where one should put p = 0. The new distribution is char-
acterized by the effective oscillator frequencies
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which fix the average square radii of the atomic cloud
through the relationships
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where the quantity
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is the chemical potential in the rotating frame and ensures
the proper normalization of the density (4). In Eq. (8) we
have defined @y, = (tZ)ch)ycuz)l/3 and dno = A/ M @np,.
The applicability of the Thomas-Fermi approximation, and
hence of the hydrodynamic equations (1) and (2), requires
that the parameter 15Na/an, be much larger than unity.
The rotation of the trap, providing a value of a different
from zero, has the consequence of modifying the shape of
the density profile, through the change of the effective fre-
quencies @, and @,. For certain values of () this effect
can destabilize the system. Physically one should impose
the conditions @2 > 0, &)yz > 0 to ensure the normaliz-
ability of the density.

The equation of continuity (1), which at equilibrium
takes the form (v — Q X r) - Vp(r) = 0, yields the fol-
lowing expression for a:
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in terms of ) and of the effective frequencies @,, y.
From (9) and (7), one finds that the expectation value of
the angular momentum,

(L)Y=M [ (r X v),n(r)dr = Q0O , (10)

is always fixed by the irrotational value ® = NM ((x? —
y2)?/{x* + y?) of the moment of inertia [12]. In terms of
the effective frequencies @, and @, the ratio between ©
and the classical rigid value @, = NM(x? + y?) takes
the simple expression

o (22
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Notice that both ® and O, depend on the value of ()
since the square radii (x*>) and ( y?) are modified by the
rotation.

Another useful quantity is the release energy E. =
Eyin + Eiy giving the energy of the system after switch-
ing off the confining trap. This quantity can be extracted
from time of flight measurements on the expanding cloud.
In nonrotating condensates it coincides with the interac-
tion energy if one works in the Thomas-Fermi regime.
In the presence of the rotation the kinetic energy Eyj, =
M [ drn(r)v?/2 cannot instead be neglected. By using
the virial identity [8] 2Exin — 2En, + 3Eine = 0, where
Ey, is the expectation value of the oscillator potential, and
noting that E;,; = (2/7)N jt, one finds the result
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For the total energy E = Exin + Eno + Eine — QL;, cal-

culated in the rotating frame, one instead finds the result
E = (5/7)N .

Let us now discuss the explicit behavior of the stationary
solutions of the hydrodynamic equations (1) and (2). By
inserting expressions (5) and (6) into Eq. (9) one finds the
following third order equation for a [13]:

20° + a(w? + a)y2 - 40% + Q(w? - a))z,) =0.

(13)
Depending on the value of () and of the deformation
02 — w2
x y
= — 14
¢ w? + o} (14)

of the trap (e > 0), one can find either 1 or 3 real solu-
tions, derivable in analytic form. As already anticipated,
the physical solutions should satisfy the additional require-
ments @; > 0 and @; > 0, which ensure the normaliz-
ability of the density and rule out some of the solutions
of (13). The resulting phase diagram is reported in Fig. 1
where, in the plane ()-€, we show explicitly the regions
characterized by 0, 1, 2, and 3 solutions. The solid curve,
given by

202 2 3
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2 2 2 2
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divides the plane into two parts: On the left-hand side,
Eq. (13) admits only one solution; on the right-hand side
it has three solutions. The dotted lines are the curves () =
wy, = wx/(1 —€)/(1 + €) and Q = w,. If € <02,
one can find (see Fig. 1) 3 stationary solutions, by properly
choosing the value of ) [14]. It is worth noticing that
the phase diagram in Fig. 1 differs from the one derivable
in the noninteracting Bose gas confined by the same har-
monic trap. In this case the density profile in the rotating
frame has the Gaussian shape p(r) = N(M&n,/7h)>? X
exp[—M(&,x* + @yy* + w,z?)/f]. The renormalized
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FIG. 1. Phase diagram representing the stationary solutions of

Eq. (13) (see text). The dotted lines are the curves {} = w, and
Q) = w,. The solid line is given by Eq. (15).
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frequencies still obey Egs. (5) and (6), but the relationship
for a takes the different form a = —Q(&, — @,)/(@, +
@y). In the noninteracting case, one finds that only one
stationary solution is available for ) < w, and ) > w,,
while no solution exists in the interval w, < () < w,.

In Figs. 2 and 3 we show the stationary solutions of
Eq. (13) for « in two interesting cases: € = 0.1, where
we predict the occurrence of a window with 3 stationary
solutions, and € = (.5, where one has a maximum of 2 sta-
tionary solutions satisfying the normalizability conditions
@2 > 0and @2 > 0. The dash-dotted lines correspond to
the stationary solution of the non interacting gas. In both
Figs. 2 and 3, one identifies two branches, hereafter called
normal and overcritical branches.

(i) Normal branch.—This branch starts at {} = 0. The
linear dependence at small () is given by « = —Q €. By
increasing () the square radius ( y?) increases and eventu-
ally diverges at {} = w,, where @, — 0 and the branch
has its end [15]. Also the angular momentum and the
release energy diverge at () = w,. Notice that when
@, — 0 the moment of inertia takes the rigid value since
(x?)y < (y?) [see Eq. (11)]. First experimental studies of
the deformed configurations induced by the rotation of the
trap have been recently reported in [16].

(ii) Overcritical branch.—This branch starts at () =
+oo, where a behaves like a = (0? — ©02)/4Q. It is
worth noticing that in this limit both &2 and 6)3 approach
the value (w2 + wyz) /2 and therefore the shape of the den-
sity profile becomes symmetric despite the asymmetry of
the confining trap. In the same limit the angular momen-
tum tends to zero while the release energy approaches the
finite value Er; = (2/7) i, Where fi is the chemical po-
tential (8) with @} = @; = (] + ®;)/2. In the over-
critical branch the deformation of the cloud takes a sign
opposite to the one of the trap. This branch exhibits a
backbending at a value of {) which is smaller than w,, but
can be higher or smaller than w,, depending on whether
the value of € is larger or smaller than 0.2 (see Figs. 2 and
3). In both cases this branch ends, after the backbending,

[
Ot
—_
ot

0 0.25 0.5 0.75 1 1.
Q/w,

FIG. 2. Stationary solutions of Eq. (13) (solid lines) as a func-
tion of (), for € = 0.1. The dash-dotted curves are the station-
ary solutions of the noninteracting Bose gas. The dotted straight
lines correspond to ) = w, and ) = w,.

at the value () = w,, where @, — 0 and (x?), (L.), and
E.. diverge.

It is also useful to discuss the instructive case € — 0
corresponding to symmetric trapping in the x-y plane
(wy = wy). In this case, one finds a solution with & = 0
for O < w,/~+/2. For higher frequencies, three solutions
appear: the first one still corresponds to a nonrotating con-
figuration (@ = 0), while two solutions, given by a =
+/20? — w2, correspond to rotating deformed configu-
rations. The existence of these two solutions, which break
the original symmetry of the Hamiltonian, is the conse-
quence of the fact that the L, = 2 quadrupole mode is
energetically unstable for 0 = w,/+/2 [7,17]. This
transition is caused by two-body interactions and is absent
in the noninteracting Bose gas. It is the analog of the bi-
furcation from the axisymmetric Maclaurin to the triaxial
Jacobi ellipsoids for rotating classical fluids [18]. With
respect to the classical problem of rotating masses our
systems are, however, characterized by repulsive two-body
forces, the confinement being ensured by the external
harmonic force. Furthermore they are characterized by the
constraint of irrotationality due to superfluidity. When
the deformation of the trap is slightly different from zero
the two solutions are no longer degenerate, the one with
a < 0 having the lowest energy. Even small values of
€ can affect the solutions near the bifurcation point in a
significant way giving rise to important deformations. For
example, by using the values € = 0.05 and ) = 0.65w,,
we find that the solution of Eq. (13) corresponds to a
condensate with the aspect ratio Ry /R, = 1.4.

The existence of stationary solutions in the rotating
frame raises the important question of stability. Actually,
one should distinguish between energetic and dynamical
instability. The former corresponds to the absence of ther-
modynamic equilibrium, and its signature, at zero tempera-
ture, is given by the existence of excitations with negative
energy. The latter is instead associated with the decay of
the initial configuration due to interaction effects and is
in general revealed by the appearance of excitations with
complex energy.

Let us first discuss the stability with respect to the center
of mass motion. In the presence of harmonic trapping the
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FIG. 3. The same as Fig. 2, for € = 0.5.
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corresponding equations of motion, in the rotating frame,
take the classical form (rotating Blackburn’s pendulum [1])
and are not affected by the interatomic forces. Their solu-
tions obey the dispersion law

1
w2=3{w§+w3+292

+ \/(a)f — w})? + 802 (w? + w%)},

and are dynamically stable (w? > 0) for Q < w, and
Q) > w,. So the requirement that the dipole oscillation be
dynamically stable excludes the region between the dot-
ted lines in Figs. 1-3. Notice that this is the same re-
gion where the Schrodinger equation for the noninteracting
Bose gas has no stationary solutions in the rotating frame.

We have further explored the conditions of stability
by studying the quadrupole oscillations of the condensate
around the equilibrium configuration in the rotating frame.
The calculation is derivable by linearizing the equations of
motion (1) and (2), with the choice

Sp(r,1) = ap + axx® + ayy® + a:z2> + ayxy, (16)
Sv(r, 1) = V(awx? + ayy? + .22 + ayxy), (17)

for the fluctuations of the density and of the velocity field,
where the coefficients a; and «; depend on time. The re-
sults of the analysis show that the window of dynamical
instability for the quadrupole oscillations is different from
the one of the dipole. In particular we find that not only the
normal branch but also the overcritical branch is dynami-
cally stable, except in the region with da'/d{) > 0, where
one of the quadrupole frequencies becomes purely imagi-
nary (w? < 0). It is remarkable that one finds stationary
solutions of the equations of motion which are stable with
respect to internal (quadrupole) shape oscillations also in
the window w, < () < w,, where the motion of the cen-
ter of mass is dynamically unstable. This feature is a non-
trivial consequence of two-body interactions and seems to
be confirmed by first experimental investigations [19]. We
have also investigated the stability of the quadrupole ex-
citations in the limiting case e = 0. In this case the up-
per and lower branches @ = *,/202 — w? give rise to a
vanishing value for one of the quadrupole frequencies, the
others being always real. This vanishing solution corre-
sponds to the rotation of the system in the x-y plane and
reflects the rotational symmetry of the Hamiltonian.

At a very low temperature the dynamically stable so-
lutions discussed above are expected to survive, at least
for useful time intervals, also in conditions of energetic
instability. When collisions are rare and dissipative pro-
cesses are negligible, these configurations can be destabi-
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lized only by nonlinear processes associated with the spon-
taneous creation of quasiparticles.

Briefly, let us finally discuss the experimental possibil-
ity of realizing the rotations described in this Letter. The
normal branch could be, in principle, generated by an adi-
abatic increase of the angular velocity, starting from a
cold condensate. The overcritical branch could be instead
reached, at least for large values of (), by adiabatically
switching on a small deformation in the confining poten-
tial, rotating at fixed angular velocity [20].
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