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Statistical Properties of Inter-Series Mixing in Helium: From Integrability to Chaos
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The photoionization spectrum of helium shows considerable complexity close to the double-ionization
threshold. By analyzing the results from both our recent experiments and ab initio three- and one-
dimensional calculations, we show that the statistical properties of the spacings between neighboring
energy levels clearly display a transition towards quantum chaos.
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Since the work of Poincaré, it has been known that the
general classical three-body problem has only global con-
stants of motion, such as energy and angular momentum. It
is thus nonintegrable, since there are not enough nontrivial
constants of motion to allow an analytical solution. This
typically implies that the phase space is a mixture of regu-
lar and chaotic dynamics. Celestial mechanics abounds
with examples, e.g., the prototypical earth-moon-sun sys-
tem [1]. The dynamics of three charged particles is su-
perficially similar since the force law scales also as 1/r2,
but with two possible signs of the coupling constant. The
actual dynamics of the two electrons in helium— the sim-
plest three-body quantum system—is largely chaotic, even
for the simplified situation with the nucleus fixed in space.
Nonetheless, at low energies the quantum states of he-
lium occur in seemingly regular progressions, labeled by
sets of approximately good quantum numbers, and even
the doubly excited states have largely been classified [2].
What then are the manifestations of the underlying clas-
sical chaos in the quantum spectrum of helium?  This
is a fundamental question in quantum-classical correspon-
dence, with regard to the nature of semiclassical approxi-
mations in the presence of chaos, and in quantum chaos
itself. What will be the signatures of the onset of quantum
chaos? One expects that the approximate quantum num-
bers, overviewed, e.g., in Ref. [2], will cease to function,
as series of states overlap and mix so strongly that there are
essentially no good quantum numbers left, except for the
ordering of states by their energies. The doubly excited
states of helium are resonances, which will overlap and
interact strongly when chaos sets in, giving rise to Eric-
son fluctuations well known in phenomenological nuclear
theory [3]. It is the purpose of this Letter to present new
results from experiment and theoretical modeling, which
clearly show that the threshold to this new regime has now
been passed for the first time in a three-body quantum sys-
tem with known Hamiltonian.

The 'P? doubly excited states of helium can be described
in Herrick’s classification scheme by N, K,,, with N (n) de-
noting the principal quantum number of the inner (outer)
electron, and K the angular-correlation quantum number
[4]. For fixed N, the various n, K series converge to
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the single-ionization threshold Iy = —4/N? (in Rydberg
units). Starting with N = 5, the lowest states of the series
lie below Iy—;. As a consequence, they act as perturbers
of the N — 1 series, leading to interferences [5], which
can be reproduced by numerically complicated ab initio
calculations [6]. While up to the N = 8§ threshold, Ig,
the effects of the perturbers are quite simple, from Iy
on, the increasing proliferation of perturbers tends to com-
plicate the spectra increasingly, and Herrick’s classifica-
tion starts to break down, at least for a large fraction of
states [7].

The most intense series in the spectrum are the prin-
cipal series with K = N — 2. Since K = —N{cos®),
where O is the angle from the nucleus to the two elec-
trons, ® approaches 7 for the principal series with large
N. Therefore, the experimentally observed series can be
related in the semiclassical limit—based on Gutzwiller’s
trace formula [8]—to periodic orbits of the collinear eZe
configuration, with both electrons on opposite sides of the
nucleus. It is well known that the classical dynamics of the
eZe configuration is strongly chaotic in the radial direction
but stable in the angular direction. One can thus expect
a mixing of series with different N but constant N — K,
i.e., a constant number of bending quanta with respect to a
collinear eZe configuration [2]. In other words, for highly
excited series, N — K is expected to be approximately a
good quantum number, while states with the same N — K,
but different (N, n), strongly interact [6].

There are numerous semiclassical studies of helium
based on Gutzwiller’s trace formula (see, e.g., Ref. [2]),
which aim at understanding the structure of quantum
dynamics in terms of its classical counterpart. The
present work focuses on the random-matrix approach [9],
which deals with universal aspects of quantum chaos,
i.e., the general features present in all chaotic quantum
systems. We compare the present experimental spectra
close to Iy with the results of our calculations and find
excellent agreement. In particular, we show that the
statistics of nearest-neighbor level spacings can be well
reproduced by a simple random-matrix model adapted to
intermittency [10], even though N — K is still a good
quantum number. This model mixes regular and chaotic
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spectra and corresponds to an interaction between regular
Rydberg series and chaotic perturbers. Using a simplified
one-dimensional (1D) model of helium, we reproduce the
transition from the regular to a fully chaotic regime.

The experiments were performed at beam line 9.0.1 of
the Advanced Light Source (ALS) in Berkeley, Califor-
nia, using photons with a spectral resolution of =2 meV
(FWHM) and a setup as described in Ref. [11]. The calcu-
lations were performed with the complex-rotation method
on a Cray C98, with details given in Ref. [6].

Figure 1(a) shows the spectrum of the 'P° double exci-
tations in helium in the energy region just below Iy from
78.1175 to 78.2675 eV, with considerably improved res-
olution and signal-to-noise ratio as compared to previous
results [12]. In Fig. 1(b), we also show the theoretical
spectrum, convoluted with a Gaussian of 2-meV width. In
the least-squares fit of the measured spectrum, the theoreti-
cal values for linewidth and Fano g parameter were used,
but the energy positions and intensities of the lines were
adjusted to allow for possible deviations between experi-
ment and theory, spectral drifts, and nonlinearities. De-
tails of this analysis have been given elsewhere [11]. As
a result, the calculated spectrum matches the experimen-
tal data very well. We note that some resonances of the
9,7, principal and the 9,5, secondary series reveal Fano
parameters |g| > 1 (up to |¢| = 7, with negative sign, for
9,714), very different from the values found for the prin-
cipal and secondary series below the /s to Ig thresholds,
with |g| = 1 [12]. However, even these unexpected ¢ val-
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FIG. 1. (a) Double-excitation spectrum of He in the region

of the 9,7, principal Rydberg series, with perturbers 10, 8
and 10, 8;; (vertical arrows). The solid line through the data
points represents the best fit. Assignments of the resonances
are made by vertical-bar diagrams on top, including resonances
of the secondary series 9,5, and 9,3,,. (b) Ab initio calculated
spectrum in the same region.
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ues are described well by our calculations. This makes
us confident that the energy levels obtained numerically
are sufficiently accurate to perform a statistical analysis on
the nearest-neighbor spacings (NNS), as discussed in the
following.

The NNS distribution, P(s), measures the distribution of
energy spacings between consecutive eigenstates. In order
to allow a comparison of large energy spacings far away
from threshold with small energy spacings close to thresh-
old, the spectra were unfolded; i.e., the energy spacings
were divided by an energy-dependent mean level spac-
ing [13], so that the mean unfolded spacing, s, is unity.
For a single unperturbed Rydberg series (or, more gener-
ally, for any regularly spaced energy levels), this would
lead to a constant unfolded level spacing s = 1, i.e., to
P(s) = 8(s — 1), where & is the delta function. When
a good quantum number exists in a system, the spectrum
can be divided into various noninteracting but overlapping
series. The nearest neighbor of a given state belongs then
typically to another series, and the energies of neighbor-
ing states are thus completely uncorrelated, giving rise to a
Poisson distribution, P(s) = exp(—s). This happens, e.g.,
in integrable multidimensional systems, but also if several
irregular series overlap without interaction. For a fully
chaotic system, the prediction for P(s) can be derived from
random-matrix theory. Because of time reversal symmetry
of the system, a Gaussian orthogonal ensemble (GOE) of
random matrices [13] is used resulting in P(s) to be very
close to a Wigner distribution, P(s) = 5sexp(—ms?/4).
Since the number of energy levels for the statistical analy-
sis is rather limited in the present case, one obtains a rather
noisy P(s). We therefore use the cumulative NNS distribu-
tion, N(s) = [ P(x) dx, leading to N(s) = 1 — exp(—s)
and N(s) = 1 — exp(—s2/4) for a Poisson and a Wigner
distribution, respectively.

The spectra were analyzed by two different procedures:
(i) globally by considering all resonances regardless of the
series to which they belong; (ii) individually for each series
associated with a given value of N — K.

We first analyze by the global procedure (i) the cal-
culated levels in the energy region 78.1000-78.2662 eV,
where there are 112 resonances, most of them from the
N = 9 series, with perturbers from higher series. The cu-
mulative NNS distribution is shown in Fig. 2(a) together
with a cumulative Poisson distribution. The agreement
is very good, showing that an approximately good quan-
tum number exists. This is not surprising, since one can
identify experimentally states with different N — K [see
Fig. 1(a)]. Occasionally, these states are mixed with other
series (in the vicinity of perturbers), but N — K is still ap-
proximately a good quantum number. This is also partly
true for other series not observed in the experiment [14]:
the series with positive K are almost independent, while
those with negative K are significantly coupled. In the full
spectrum, the various N — K series are superimposed with
rather weak mixing, resulting mainly in an uncorrelated
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FIG. 2. (a)—(c) Cumulative NNS distributions for the 'P°

states of helium below (b) I, and (a),(c) Io. (a) Global
analysis using all levels below Io. The data (solid line) agree
very well with a cumulative Poisson prediction (dashed line).
(b),(c) Distributions below I, and Iy, respectively, obtained by
analyzing separately individual series with different K. For Iy
(c), the bold line is the distribution derived from experiment.
(d)—(f) Cumulative NNS distributions for singlet states of 1D
helium (horizontal bars) below Iy, I;3, and I}, respectively.
The solid lines are the fit results (see text). The bold solid line
in (d) is the NNS distribution for states of 3D helium below /.
The dashed lines in (b)—(f) represent the cumulative Wigner
distribution.

ensemble of levels, which thus obeys Poisson statistics.
This complies with the stability of the eZe collinear con-
figurations with respect to off-collinear perturbations.
Hence, a relevant data analysis must be done individu-
ally for each N — K series [procedure (ii)]. The cumu-
lative NNS distributions, N(s), obtained in this way, are
shown in Fig. 2(b) for resonances below /4 and in Fig. 2(c)
for those below Ig. The statistical accuracies are limited
due to the relatively small number of data points with 71
(60) spacings for 14 (Iy). Moreover, for Ig, only series with
K between 0 and 8 were unfolded because of K mixing for
negative K values, while for /4 all series are used. The I
distribution clearly reflects the quasiregularity in this en-
ergy region, as it is very close to a step function, which
results from integrating over a delta function. This is the
statistical analog to the fact that the spectrum below I, is
composed only of N = 4 states and can be described by
single-channel quantum defect theory. Below Iy, the sit-
uation has slightly changed, although the distribution still
does not match a cumulative Wigner distribution. It means
that the relative density of chaotic perturbers with N > 9
has increased as well as their interaction with the various

Rydberg series. The bold line in Fig. 2(c) shows N(s)
using only the experimentally observed series N — K =
2 and 4. Because of the small number of 17 spacings,
the statistics are relatively poor, but it is striking that the
bold line closely follows the solid line. As a consequence,
the spectrum in Fig. I(a) represents the first experimental
verification of a transition of the NNS distribution towards
quantum chaos in a three-body Coulomb system.

The complex numerical calculations for 3D helium ren-
der it difficult to obtain enough spacings for a quantita-
tive analysis in the case of N > 9. However, the fact that
N — K remains approximately a good quantum number
means that the bending motion can be essentially frozen in
the eZe configuration. In other words, the quantum prop-
erties are essentially those of 1D helium, a system that has
only 2 degrees of freedom. This leads to much simpler nu-
merics allowing higher ionization thresholds to be reached.
We have therefore calculated the resonances of 1D helium
below Iy, I3, and 117 using a new approach (banded sparse
matrix representation of the Hamiltonian in a 1D perimet-
ric basis, in the spirit of Ref. [6]) that represents a signifi-
cant improvement over previous methods [15].

In order to improve statistics, we calculated spacings in
a given energy region for slightly different values of the nu-
clear charge Z, from 1/Z = 0.45 to 1/Z = 0.55, in steps
of 0.01. These values are statistically uncorrelated and
sufficiently close to Z = 2 of helium, so that the average
density of states and the classical dynamics do not change
significantly. Figures 2(d)—2(f) show the cumulative NNS
distributions for states below Ig, 13, and 17, respectively,
as well as the cumulative Wigner distribution and the 3D
result for Ig9. The results demonstrate that the statistical
level properties are essentially the same for 1D and 3D
helium and they illustrate the transition from an irregular
regime (Iy), with a distribution intermediate between a step
function and a cumulative Wigner distribution, to a chaotic
regime (/17), with a distribution that is almost Wigner-like.
For 1,7, the lack of large spacings is the only remnant of
regularity.

This behavior can be understood in a quantitative way by
the model of Zakrzewski et al. [10], which was developed
to understand the NNS statistics of the hydrogen atom in a
magnetic field, whose spectrum is quite similar to that of
helium in the sense that “chaotic” perturber states interact
with a regular series. In this model, the Hilbert space is
composed of two subspaces, a “regular” one and a chaotic
one. The model Hamiltonian is diagonal in the regular
subspace with equally spaced eigenvalues (representing
Rydberg series). In the chaotic subspace (representing
the perturbers), the Hamiltonian is modeled by a random
matrix, with a coupling v between regular and chaotic
states (v in units of the spacing between regular states;
for details, see Ref. [10]). For large matrices, this model
has only two parameters: the weight p of chaotic states
(1 — p of regular states) and the coupling strength v.
Above the first ionization threshold, an imaginary part is
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added to the GOE matrix as in [10], with an additional pa-
rameter measuring the strength of coupling to the continua;
this coupling strength is small playing therefore only a mi-
nor role.

The calculated NNS distributions for 1D helium were
fitted with this model, which turned out as a good descrip-
tion. The fits reproduce the lack of large spacings and re-
sultin p = 0.29, 0.33, and 0.40 for Iy, I3, and 1,7, respec-
tively. A second estimate for p is based on the size of the
cutoff value for the level spacings [see Figs. 2(d)-2(f)],
which can be related to p. In the perturbative regime,
when the coupling between chaotic and regular levels is
not so strong as to modify their densities, two neighbor-
ing states cannot be further apart than two unperturbed
regular states. The reason is that a perturber repels neigh-
boring levels and in this way reduces the NNS between
them. With m = p/(1 — p) being the average number of
chaotic states per regular state, the largest possible spacing
will be (m + 1) = 1/(1 — p) times the mean level spac-
ing. This procedure leads to p = 0.25, 0.33, and 0.41 for
Io, I3, and 17, respectively.

A further rough estimate for p not based on the model,
but on the physics of the real system, is possible: the local
density of regular states can be estimated assuming that a
Rydberg series converging to Iy sees an effective nuclear
charge of Z — 1 = 1. The density of chaotic states is the
sum of densities of states of all series with higher N. As N
increases, the upper thresholds lie closer and closer leading
to an increase in the fraction of chaotic states. In this way,
we obtain p = 0.23, 0.35, and 0.43, respectively, for Io,
113, and I;7. We note that all three approaches provide
rather similar results for p.

The increase of p with N alone, however, is not suf-
ficient to explain the transition to an almost Wigner-like
distribution for /;7: the coupling strength between chaotic
and regular states has to increase, too. This is indeed the
case, with the best fits resulting in v = 0.38, 0.73, and
1.2 for Ig, 113, and 17, respectively. It clearly shows that
the individual influence of each perturber gets more impor-
tant when one approaches higher thresholds. This leads to
a globally chaotic spectrum, where a distinction between
regular levels and perturbers loses more and more of its
meaning.

In conclusion, we have found—on the basis of sta-
tistical analysis—clear evidence of a transition towards
quantum chaos in the doubly excitated spectrum of helium
below Iy, with support from the results of our ab initio cal-
culations for 3D and 1D helium. The effects of chaos cor-
respond to a loss of the radial quantum number N, whereas
N — K remains approximately a good quantum number,
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and they are directly related to the instability of the eZe
orbits in the radial direction (i.e., preserving collinearity)
and their stability with respect to bending. The statistical
study of 1D helium provides an estimate for the observa-
tion of a fully chaotic regime in 3D helium (for N = 17).
It may happen that this regime appears even at lower N
values if N — K breaks down. One can hope that future
experiments, as well as numerical calculations for 3D he-
lium in the region above Iy, will provide further insight
into the chaotic regime of helium.
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