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We construct stationary black-hole solutions in SU(2) Einstein-Yang-Mills theory which carry angular
momentum and electric charge. Possessing nontrivial non-Abelian magnetic fields outside their regular
event horizon, they represent nonperturbative rotating hairy black holes.
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Introduction.—Black holes in Einstein-Maxwell (EM)
theory are completely determined by their mass, their
charge, and their angular momentum, i.e., EM black holes
have “no hair” [1,2]. The unique family of stationary
asymptotically flat EM black-hole solutions comprises the
rotating charged Kerr-Newman (KN) solutions, the static
charged Reissner-Nordstrøm solutions, the rotating Kerr
solutions, and the static Schwarzschild solutions. Besides
the “no-hair” theorem, Israel’s theorem holds in EM theory,
stating that static black holes are spherically symmetric.

Both theorems cannot be extended to theories with non-
Abelian gauge fields [3,4]. While the first classical “hairy”
black-hole solutions found are static and spherically sym-
metric [3], recently also static black-hole solutions with
only axial symmetry have been constructed [5,6], as well
as static (perturbative) black-hole solutions without rota-
tional symmetry [7].

Evidently, also rotating hairy black-hole solutions
should exist [8]. The construction of such solutions, how-
ever, has represented a difficult challenge. In particular,
the usual parametrization of the stationary axially symmet-
ric metric [9] has been considered as possibly too narrow
for non-Abelian solutions [10–12], and furthermore, even
the usual parametrization leads to a highly involved set of
differential equations, to be solved numerically. There-
fore, stationary generalizations of the static spherically
symmetric SU(2) Einstein-Yang-Mills (EYM) black-hole
solutions [3] have previously only been considered per-
turbatively [10,13].

Here we construct the first set of nonperturbative rotat-
ing non-Abelian black-hole solutions. Considering SU(2)
EYM theory as well, we obtain hairy black-hole solutions
which are asymptotically flat and possess a regular event
horizon. Similar to their perturbative counterparts [10],
these hairy black-hole solutions carry both angular mo-
mentum and electric charge.

Embedded Kerr-Newman black holes.—We consider the
SU(2) EYM action
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m, and G and e are Newton’s constant and
the Yang-Mills coupling constant, respectively. Variation
with respect to the metric and the matter fields leads to the
Einstein equations and the field equations, respectively.

We first note that Kerr-Newman black holes may be
embedded in SU(2) EYM theory [14]. For a Kerr-Newman
black hole with mass M, angular momentum J � aM and
“total charge” Q, where Q2 � QaQa 1 PaPa [15,16],
the metric in Boyer-Lindquist coordinates is given by

ds2 � 2
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r2 �dt 1 a sin2udw�2 1
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0dw�2
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with

r2 � r̃2 1 a2 cos2u, r2
0 � r̃2 1 a2,

D � r̃2 2 2Mr̃ 1 a2 1 Q2, (3)

and the gauge field is given by

Aa
mdxm �

Qar̃
r2 �dt 1 a sin2udw�

1
Pa cosu

r2 �adt 1 r2
0dw� . (4)

The condition D�r̃H� � 0 yields the regular event
horizon of the Kerr-Newman solutions, r̃H � M 1p

M2 2 �a2 1 Q2�.
Ansatz for hairy black holes.—Proving to be adequate,

we employ the usual parametrization of the metric [9] to
obtain rotating hairy black-hole solutions. In isotropic
coordinates the metric reads

ds2 � 2 fdt2 1
m
f

�dr2 1 r2du2�

1 sin2ur2 l
f

∑
dw 1

v

r
dt

∏2

, (5)

where f, m, l, and v are functions of only r and u. This
ansatz satisfies the circularity and Frobenius conditions
[2,9,17]. For the gauge potential we choose the ansatz
© 2001 The American Physical Society
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where the symbols tr , tu , and tw denote the dot prod-
ucts of the Cartesian vector of Pauli matrices with the
spherical spatial unit vectors (e.g., tr � tx sinu cosw 1

ty sinu sinw 1 tz cosu), and the gauge field functions Hi

and Bi depend on only r and u.
With respect to the residual gauge degree of freedom [5]

we choose the gauge condition r≠rH1 2 ≠uH2 � 0.
Boundary conditions.—To obtain stationary axially

symmetric black-hole solutions which are asymptotically
flat, and possess a regular event horizon, as well as a finite
mass, angular momentum, and electric charge, we need to
impose the appropriate set of boundary conditions.

The condition f�rH� � 0 determines the event horizon
[18]. Regularity of the event horizon then requires the
boundary conditions f � m � l � 0, v � vH � const,
H1 � 0, ≠rH2 � ≠rH3 � ≠rH4 � 0, rHB1 1 cosuvH � 0,
rHB2 2 sinuvH � 0, for r � rH, u [ �0, p� (with the
gauge condition ≠uH1 � 0 taken into account).

The boundary conditions at infinity are f � m � l � 1,
v � 0, H1 � H3 � 0, H2 � H4 � 61, and B1 �
B2 � 0. The boundary conditions on the symmetry axis
(u � 0) are ≠uf � ≠ul � ≠um � ≠uv � 0, H1 � H3 �
B2 � 0, ≠uH2 � ≠uH4 � ≠uB1 � 0, and agree with the
boundary conditions on the u � p�2 axis, except for
B1 � 0, ≠uB2 � 0.

Properties of the solutions.—The global charges of the
black-hole solutions are determined from their asymptotic
behavior. In particular, expansion at infinity yields [19]

f ! 1 2
f`

r
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,
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r
,
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determining the mass M �
1
2 limr!` r2≠rf, the angular

momentum J �
1
2 limr!` r2v and the electric charge Q �

B`�e, which we read off in a gauge where F !
B`

r
tz

2e .
Of interest are also the properties of the horizon. The

surface gravity is obtained from [9]

k2
sg � 21�4�Dmxn� �Dmxn� , (9)

where the Killing vector x � j 2 �vH�rH�h (j � ≠t ,
h � ≠w) is orthogonal to and null on the horizon. Expan-
sion near the horizon in d � �r 2 rH��rH yields to lowest
order f � d2f2�u�, m � d2m2�u� [20], and thus the sur-
face gravity

ksg �
f2�u�

rH

p
m2�u�

, (10)

which by the zeroth law of black-hole mechanics is re-
quired to be constant on the horizon.

We further consider the area A of the black-hole horizon,
defining the area parameter rD via A � 4pr2

D, and the
deformation of the horizon, quantified by the ratio Le�Lp

of the circumferences along the equator and the poles.
We have checked that for our numerical solutions the

surface gravity is indeed constant and the Kretschmann
scalar is finite at the horizon [20].

Numerical results.—We solve the set of ten coupled
nonlinear elliptic partial differential equations numeri-
cally, subject to the above boundary conditions, employing
compactified dimensionless coordinates, x̄ � 1 2 �xH�x�
with x � �e�

p
4pG�r .

The numerical calculations are performed with the pro-
gram FIDISOL [21], based on the Newton-Raphson method.
Starting from an initial configuration, corrections are cal-
culated successively, until the numerical solution satisfies a
given tolerance for the relative error, typically 1023 1024.

The solutions depend on one discrete parameter, the
node number n of the gauge field, and on two continuous
parameters, the isotropic horizon radius xH and the value
of the metric function v at the horizon, vH, where vH�xH
represents the rotational velocity of the horizon.

As an initial guess we employ the static spherically sym-
metric SU(2) EYM black-hole solution with horizon radius
xH and one node, corresponding to vH � 0 [22]. Increas-
ing vH leads to rotating black-hole solutions with non-
trivial functions v, B1, B2, H1, and H3, whose mass M,
electric charge Q, and angular momentum J are deter-
mined from their asymptotic behavior [see Eq. (8)].
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FIG. 1. The dimensionless mass m of the rotating non-Abelian
black-hole solutions is shown on the lower branch (solid line)
and upper branch (dashed line) as a function of the parameter
vH for the horizon radius xH � 1. Also shown are the angu-
lar momentum per unit mass a � J�m and the charge Q. For
comparison m and a of the Kerr solution (Q � 0) for xH � 1
are also shown (dotted line).
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FIG. 2. The surface gravity ksg of the rotating non-Abelian
black-hole solutions is shown on the lower branch (solid line)
and upper branch (dashed line) as a function of the parameter vH
for the horizon radius xH � 1. Also shown are the area parame-
ter xD and the deformation, as quantified by the ratio of circum-
ferences Le�Lp . For comparison ksg, xD and Le�Lp of the Kerr
solution (Q � 0) for xH � 1 are also shown (dotted line).

As we increase vH from zero, while keeping xH fixed,
a first branch of solutions forms, the lower branch. This
branch extends up to a maximal value of vH, which de-
pends on xH. There a second branch, the upper branch,
bends backwards towards vH � 0. Along both branches
mass, electric charge, and angular momentum continu-
ously increase, as seen in Fig. 1, where the dimensionless
mass m � �e�

p
4pG�GM, the electric charge Q, and the

angular momentum per unit mass a � J�m are shown as
functions of vH for xH � 1.

The presence of two branches is no surprise. Indeed,
also the KN and Kerr solutions exhibit two branches, when
considered as functions of vH for fixed isotropic horizon
radius xH.

Whereas both mass m and angular momentum per unit
mass a of the non-Abelian solutions increase strongly
along the upper branch, diverging with v

21
H in the limit

vH ! 0, their electric charge Q remains small. For com-
parison, we therefore show in Fig. 1 also m and a of the
corresponding Kerr solutions (Q � 0) for xH � 1, which
satisfy vH

xH
� �

p
m2 2 4x2

H�2m�m 1 2xH��. The Kerr so-
lutions exist up to a slightly higher value of vH. Along the
TABLE I. The dimensionless mass m, the charge Q, the angular momentum per unit mass a � J�m, the surface gravity ksg, the
area parameter xD, and the ratio of circumferences Le�Lp of the rotating non-Abelian black-hole solutions are shown for the values
vH � 0.01, 0.02, and 0.05 and horizon radius xH � 1. For comparison the values of the corresponding Kerr solutions (Q � 0) are
also shown.

vH � 0.01 vH � 0.02 vH � 0.05
EYM Kerr EYM Kerr EYM Kerr

m 2.23 2.01 2.25 2.03 2.46 2.20
Q 0.233 3 1022 0 0.474 3 1022 0 1.35 3 1022 0
a 0.18 0.16 0.365 0.321 1.051 0.927
k 0.112 0.124 0.110 0.122 0.095 0.108
xD 4.23 4.01 4.26 4.04 4.58 4.31

Le�Lp 1.0013 1.0012 1.0055 1.0049 1.0412 1.0361
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FIG. 3. The energy density 2T0
0 of the rotating non-Abelian

black-hole solutions is shown on the lower branch for vH �
0.05 and horizon radius xH � 1. Also shown are the event
horizon (solid line) and the static limit (dashed line), enclosing
the ergosphere.

upper branch, the non-Abelian fields become less impor-
tant, and the solutions tend towards extremal Kerr (KN)
solutions in the limit vH ! 0.

In Fig. 2 we show the surface gravity ksg for xH � 1
as a function of vH, as well as the area parameter xD and
the deformation of the horizon, quantified by Le�Lp . As
a typical example of a rotating hairy black-hole solution,
we show in Fig. 3 the energy density 2T0

0 (of the gauge
fields) for isotropic horizon radius xH � 1 and vH �
0.05. Properties of this solution are shown in Table I, and
compared to the corresponding Kerr values.

In Fig. 4 we show the mass m of the non-Abelian black-
hole solutions as a function of the isotropic horizon radius
xH for several fixed values of vH. For a given value of
vH there is a minimum value of the horizon radius xH. In
particular, the limit xH ! 0 is reached only for vH ! 0.
Thus we do not obtain globally regular rotating solutions
in the limit xH ! 0 [10]. This is to be expected, since
globally regular rotating solutions should satisfy a different
set of boundary conditions at infinity [13].

For comparison, we have included in Fig. 4 the mass m

of the corresponding Kerr black-hole solutions. For a fixed
value of vH, the Kerr solutions form two straight lines,
extending from the origin. The non-Abelian solutions tend
toward these lines for large values of the horizon radius.
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FIG. 4. The dimensionless mass m of the rotating non-Abelian
black-hole solutions is shown on the lower branch (solid line)
and upper branch (dashed line) as a function of the horizon
radius xH for the values of the parameter vH � 0.01, 0.02,
0.05. For comparison for the same values, the mass of the Kerr
solution (Q � 0) is also shown (dotted line).

To compare with the perturbative calculations, where
linear rotational excitations of the static EYM black holes
were studied, we consider the limit vH ! 0 along the
lower branch. In the perturbative calculations Q ~ J [10],
and the ratio Q�J depends only on the horizon radius. The
nonperturbative calculations show good agreement with
the perturbative results for small values of vH (on the
lower branch) and large values of the horizon radius. For
small values of the horizon radius, significant deviations
arise.

Further details of these rotating non-Abelian black-hole
solutions as well as the presentation of the rotating higher
node solutions will be given elsewhere [20].

Beside these non-Abelian stationary charged black-hole
solutions with finite angular momentum J and finite elec-
tric charge Q, the perturbative studies [13] have revealed
two more types of stationary non-Abelian black-hole so-
lutions, namely, rotating black-hole solutions which are
uncharged (J . 0, Q � 0), and nonstatic black-hole so-
lutions, which have vanishing angular momentum (J � 0,
Q fi 0). Both types satisfy a different set of boundary
conditions at infinity. Construction of their nonperturba-
tive counterparts remains open, as well as the possible
existence of rapidly rotating branches of non-Abelian
black-hole solutions, not connected to the static solutions.

By including dilaton and axion fields, finally, further in-
teresting rotating hairy black holes should be generated,
representing new solutions of the low energy effective ac-
tion of string theory.
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