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Scaling properties of a cortical network wired in a stochastic manner with a distance-dependent proba-
bility of a direct connection are considered. In the infinite network limit, an average degree of separation
between neurons displays both universality and criticality. The latter feature manifests itself by ap-
pearance of a stairlike structure with numerous plateaus as a function of a connectivity exponent. It is
suggested that these plateaus may be advantageous in the cortex design. Wiring principle incorporating
minimization of both axonal length and the degree of separation is also discussed. This principle leads
naturally to a trade-off between saving axons and saving energy required in the communication.
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There exists a strongly held belief in the neuroscience
community that the architecture of the cerebral cortex is
designed in such a way as to save available resources [1],
which include axons and dendrites. Since axons are very
important in long distance communication between cor-
tical areas, they have been a prime target of saving. As
a consequence, several authors [2–5] have explored the
principle of minimal axon length as a candidate for an op-
timal wiring. In this type of wiring, one assumes that the
cortex has a volume or geometry that minimizes the aver-
age length of long-range axons. However, this principle,
and those similar to it [6], do not take into account en-
ergetic constraints involved in the transfer of information
over long distances.

In this paper, we address this additional aspect by study-
ing a quantity characterizing the degree of separation be-
tween neurons. This quantity is a good measure of how
fast information can be conveyed in a network. It is also
proportional to the overall energy cost required in this com-
munication, since it is directly related to the number of
spikes fired by neurons. For efficient communication, one
would expect that the degree of separation should be as
small as possible. We show that, in fact, there is a trade-off
between minimizing the energy cost and minimizing the
biochemical resources, i.e., axonal length and number of
synapses. This is because shorter axons require more steps
in connecting remote cortical areas, and vice versa. Thus,
we argue that the optimal wiring in the cortex should be
achieved for some intermediate values of axonal length and
the degree of separation.

We study a network of volume Vg with a geometry that
mimics that of the gray matter of the cortex, i.e., with a sur-
face area W � R2

k and thickness R� �Vg � WR��, with a
condition R��Rk ø 1. (For technical reasons, we will
think about the cortical surface not as a sphere but as a
plane, with the same total area, which arises after stretch-
ing out the cortical sphere). We assume that neurons are
sparsely connected in a stochastic manner, i.e., each neuron
is directly connected to M0 others of the total number of
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neurons M, where M0�M ø 1. We also assume that de-
spite many classes of neurons, there can be defined some
globally average probability of a direct connection p�r�,
the same for each neuron, that is distance r dependent.

There are three basic densities in the cerebral cortex
which are roughly constant across cortical regions and
different species [7]: (i) surface density of neurons r �
M�W , (ii) volume density of synapses MM0�Vg, and
(iii) total length of short-range (intracortical, i.e., con-
tained exclusively in the gray matter) axons per volume
ML1�Vg, where L1 is the total length of short-range ax-
ons per neuron. It is not clear experimentally how the total
length of long-range (cortico-cortical, i.e., those leaving
the gray matter) axons scale with the gray matter volume.
However, if we assume that the cortical white matter is
composed primarily of long-range axons and that average
axonal width does not change with a brain size [7], then we
have ML2 � Vw , where L2 is the total length of long-range
axons per neuron and Vw is volume of white matter. Since
the latter scales with the volume of the gray matter as
Vw � V

g
g , where exponent g � 1.22 1.33 [8–10], we

obtain for long-range axons that density ML2�V
g
g should

be roughly constant (brain size independent).
Based on the above experimental facts, we can introduce

the following new scale transformations

M � M�s� � Ms ,

M0 � M0�s� � M0sf�s� ,

Rk � Rk�s� � Rks
1�2,

R� � R��s� � R�sf�s� ,
(1)

L1 � L1�s� � L1sf�s� ,

L2 � L2�s� � L2s2g21�f�s��g ,

which leave the above four densities invariant. Notice that
Rk and R� scale differently, which is a consequence of
an anisotropy in the system. In general, scaling function
© 2001 The American Physical Society
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f�s� can have an arbitrary form with the only require-
ment f�1� � 1. However, guided by experimental data
[8,9,11–13], we choose f�s� � sa21 for s ¿ 1, where a

is a scaling exponent, and we hypothesize that f�s� � 1
for s ø 1. The latter conjecture yields a reasonable be-
havior for p�r� at small r (see below).

The total axon length L per neuron can be defined as
L � kL1 1 �1 2 k�L2, where k is a fraction of neu-
rons with short-range axons only. In the limit of large
brains, L1 and L2 scale like L1 � sa and L2 � sg�a11�21

(or equivalently L1 � R� � R2a
k , and L2 � R

2g�a11�22
k ),

which indicates that L is the exponentially growing func-
tion of the scaling exponent a (Fig. 1). The same is true
for the number of synapses M0 per neuron, which scales
as �sa . Thus, the cost of biochemical resources increases
very quickly with a.

We define a connectivity ratio q � M0�M, with a scal-
ing relation q�s� � qf�s�, which is useful in the network
classification for large brains. For a , 1 the network be-
comes sparsely connected, q�s� � 0 for s � `. The case
a . 1 becomes not physical for large networks, since then
q�s� � ` and the network becomes fully connected. We
restrict our analysis below to the case a # 1.

The relationship between the average “universal” proba-
bility p�r� and the number of synapses M0 per each neuron
is given in the continuum limit by

r
Z

d2r p�r� � M0 , (2)

where r is 2D length measured along the cortical surface,
with a scaling law r�s� � rs1�2. The part of p�r� with
small values of r corresponds to a connection which uses
a short-range axon that do not leave the gray matter. For
large values of r , p�r� describes a possible connection
involving a long-range axon that leaves the gray matter,
travels along the white matter, and again enters the gray
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FIG. 1. Schematic dependence of the total axonal length L
per neuron and the number of synapses M0 per neuron on the
exponent a. Note the exponential increase with a.
matter to connect a target neuron. Note that, in the con-
tinuum limit, p�r� is a conditional probability of a direct
connection between some primary neuron and another neu-
ron, given that the latter is at distance r from the former.
The probability of encountering another neuron at distance
r is given by rd2r�M.

From Eqs. (1) and (2), it follows a scaling relation for
the probability of connection p�r�s�, s� � f�s�p�r�1�, 1�,
where p�x, 1� � p�x�. This relation is crucial for deter-
mining the degree of separation between neurons in the
network. In order to achieve this, we define probability
Sk�r�, which represents the probability of connection, be-
tween neurons separated by r , along at least one of the
shortest paths that use k steps (k synapses). Note that this
definition forbids paths with loops. The probability Sk�r�
has the following form in the discrete limit

Sk�r� � 1 2

NkY
�i1,i2,...,ik21	

�1 2 P�k��r; �ri1 , . . . , �rik21 �� , (3)

where Nk � � M22
k21 � �k 2 1�! is the number of all possible

paths connecting two neurons through k synapses (Nk 

Mk21 for k ø M), and

P�k��r;�ri1 , . . . , �rik21 �

� p�j�ri1 j�p�j�ri2 2 �ri1 j� · · · p�j�r 2 �rik21 j� (4)

is the probability of a k-synapse connection for neurons
separated by r via a given path i1, i2, . . . , ik21, where
subscript il denotes the neuron’s number (because loops
are not allowed, subscripts along the path must be dif-
ferent). One can justify the formula for Sk�r� by noting
that the product involving probabilities P�k� on the right
hand side of Eq. (3) represents the probability of not hav-
ing k-synapse connection via either path.

We simplify further the form for Sk�r� by using an iden-
tity

Q
�i� xi � exp�

P
�i� lnxi�, obtaining in the continuum

limit

Sk�r� � 1 2 e2pk�r�, (5)

where functions pk�r� are given by

pk�r� � 2rk21
Z

d2r1 · · ·
Z

d2rk21

3 ln�1 2 P�k��r; �r1, . . . , �rk21�� . (6)

In this limit, Sk�r� becomes a conditional probability, simi-
lar to p�r�, of connection between two neurons along
at least one of the shortest paths that use k synapses,
given that the connected neuron is separated by r from
the original neuron. Note that for k � 1 we have p1 �
2 ln�1 2 p�r��, and hence S1�r� � p�r�, as should be.

The complicated dependence of the probability Sk�r� on
k for fixed r simplifies in the limit s � `, and this is due
to the scaling properties of pk�r�s�, s�. From the scaling
law for p�r�s�, s� and Eq. (6), we obtain
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pk�r�s�, s�s�` 7 °!

8><
>:

0, a , 1�k ,

p
�1�
k �r�, a � 1�k ,

` a . 1�k ,
(7)

where p
�1�
k �r� is the first term of the series for pk�r� after

expanding the logarithm and reads

p
�1�
k �r� � rk21

Z
d2r1 · · ·

Z
d2rk21

3 P�k��r; �r1, . . . , �rk21� . (8)

Notice that in this limit, i.e., the limit of very large brains,
the rescaled probability Sk�r�s�, s� in Eq. (5) becomes
distance independent and additionally displays a step-
like behavior as a function of k, assuming value 0 for
k , 1�a (lack of connection), and value 1 for k . 1�a

(complete connection); see Fig. 2. The former feature is
a form of the universality, while the latter is a signature
of the critical behavior. Thus the smallest number of
steps Ns�` required to connect two arbitrary neurons in
the limit of the infinite network is given by the smallest
integer satisfying Ns�` . 1�a.

The general solution for the smallest number of steps
or equivalently the average degree of separation �N	s valid
at arbitrary scale s can be obtained by calculating the ex-
pected number of minimal steps, which are necessary to
connect two neurons. In the interval 0 , a , 1, and in
the limit s � `, this solution can be written in the form

�N	s�` � int

∑
1
a

1 1

∏
1 z �a� 1 O�s2e� , (9)

where int�x� denotes an integer part of x, e is some
positive exponent (it depends on a� controlling the
contribution coming from finite-size effects, and z �a� �
limW�`

1
W

R
d2r exp�2p

�1�
k �r�� for a � 1�k, and z �a� �
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FIG. 2. Dependence of the probability of k-steps connection
Sk�`� via at least one of the shortest paths between two neurons
on the number of steps k in the limit of the infinite network.
Note a critical behavior at k � 4, which corresponds to the case
with a � 0.25.
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0 otherwise. The function z �a� is only marginally
important, for it is nonzero and smaller than one only at
the discontinuity points. We display the dependence of
�N	s�` on a, in the interval 0 , a , 1 in Fig. 3. For
a � 1 we have �N	s�` � 2 2 M0�M, and for a , 0 we
have both Sk�r�s�, s�s�` � 0 (for every k) and �N	s�` �
0, which implies that the network is completely discon-
nected in this case.

Equation (9) is our major result. It basically shows that
the average degree of separation between neurons displays
numerous plateaus and discontinuous jumps at points for
which a � 1�k, for k � 1, 2, 3, . . . . This critical behavior
(“phase transitions”) associated with a stairlike structure
(Fig. 3) is a consequence of Eq. (7). Similar structures
appear also in phenomena involving fractals [14]. The
stairlike structure gradually becomes smooth and eventu-
ally disappears as finite-size effects are included. However,
the decaying trend of �N	s with the exponent a remains
unchanged.

The average degree of separation �N	s�` and the total
axonal length L per neuron depend differently on the ex-
ponent a (compare Figs. 1 and 3). The former decreases
with a or exhibits plateaus, while the latter increases
continuously with a. These two quantities are related,
respectively, to the energy consumption during commu-
nication and to the use of biochemical resources in a
wiring design. In the case of an optimal wiring, one
wants to have both �N	s�` and L, M0 as small as possible,
which turns out to be impossible to satisfy simultaneously.
Thus, there is a trade-off between minimizing energetic
and biochemical costs suggesting that an optimal situation
should arise somewhere for intermediate values of the ex-
ponent a. It was determined based on the data for larger
corticies of different species with sizes spanning a few or-
ders of magnitude [8,9,11–13], that aex 
 0.10. If one
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FIG. 3. Dependence of the average degree of separation
�N	s�`, on the exponent a in the limit of the infinite network.
Note the stairlike structure with infinitely many plateaus, and a
decaying trend of �N	s�` as a grows.
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considers only smaller nonconvoluted corticies [9,12], then
aex is larger, namely aex 
 0.25. From Eq. (9) these val-
ues yield the following estimates of the average degree of
separation: �N	` � 10 11 for aex 
 0.10, and �N	` � 5
for aex 
 0.25. The fact that aex is closer to zero than to
one may suggest that for the corticies, especially bigger,
it is more advantageous to save axons and synapses than
to save energy used in the long distance communication
between cortical areas.

The appearance of the plateaus in the degree of separa-
tion may be an advantageous feature in the cortex design,
because it allows one to save axonal fibers at the same en-
ergetic cost required in the communication. Although in
the regime relevant for bigger brains, i.e., for small a, the
plateaus become shorter and consequently the savings of
axonal length per neuron becomes tiny; the total axonal
length in the cortex can be reduced significantly. This
is because the total number of neurons in the cortex is
immense.

For finite brains, it follows from Eq. (5) that in order
to reach remote neurons in the cortex in just few steps,
it is required that pk�r� have a long-range tail. This
condition is satisfied only when the original probability
p�r� has a long-range tail. One can produce such be-
havior naturally by imposing a homogeneity condition on
p���r�s�, s���, i.e., p���r�s�, s��� � p���r�s��sb , 1��� with some ho-
mogeneity exponent b. This condition can be justified by
noting that different corticies look roughly alike anatomi-
cally at sufficiently large spatial scales. Combining the
two scaling laws for p���r�s�, s���, we obtain p�r� � �r�s�z

for r�s ¿ 1, i.e., the power-law decay for large distances
with z � 22�1 2 a���1 2 2b� [note that b must satisfy
b , 1�2 in order z , 0], and p�r� � 1 for r � 0. The
quantity s denotes a microscopic length characterizing
neuron’s size or an extent of local, intracortical connec-
tions �s�Rk ø 1�, and has a scaling law s�s� � ssb . At
short distances (r�s ø 1� , that is, in the regime rele-
vant for local connections, we expect that p�r� decays
faster, such as a Gaussian [15]. Finally notice that theoreti-
cally the minimal separation between neurons is reached
for a � 1, corresponding to z � 0, which is the case with
the longest possible tail of p�r�.

The approach presented in this paper can be generalized
to other situations with different geometry and different
invariants. It is somehow related to the approaches taken in
the so-called “small-world” networks [16–19]. The main
difference between the two is that in the present approach,
the probability of a direct connection is distance dependent,
contrary to most of the small-world models, with one very
recent exception [20].
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