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Metallic Conduction through Engineered DNA: DNA Nanoelectronic Building Blocks
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A novel way of engineering DNA molecules involves substituting the imino proton of each base pair
with a metal ion to obtain M-DNA with altered electronic properties. We report the first direct evidence
of metalliclike conduction through 15 mm long M-DNA. In contrast, measurements on B-DNA give
evidence of semiconducting behavior with a few hundred meV band gap at room temperature. The
drastic change of M-DNA conductivity points to a new degree of freedom in the development of future
molecular electronics utilizing DNA, such as creating all-DNA junction devices for use as nanoelectronic
building blocks.
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The use of DNA molecules in nanoelectronic circuits is
very promising; their self-assembly and molecular recog-
nition abilities may help alleviate the problems of inter-
element wiring and positioning at the nanometer scale [1].
While it has been proposed that the stacked aromatic
bases of DNA may act as a “p-way” for the efficient
transfer of electrons [2–4] and there have been reports
that DNA may be a good linear conductor [5,6] others
have found that DNA is only somewhat more effective
than proteins as a conductor of electrons [7,8]. More
recently, measurements of electrical transport through
individual short (10 nm long) DNA molecules indicated
wide-band-gap semiconductor behavior [9]. While the
conductive properties of DNA may still be under debate,
a reliable method for modifying the conductivity of DNA
molecules would be much welcomed for DNA molecular
electronics to become feasible. A novel way of “engineer-
ing” DNA molecules is being developed which involves
substituting the imino proton of each base pair with a
metal ion to alter the electronic properties of the DNA
[10,11]. The resulting conformation is hereafter referred
to as M-DNA. Initial fluorescence quenching and lifetime
experiments of long M-DNA duplexes revealed features
consistent with fast electron transfer [11]. Here we report
the first direct evidence of metalliclike conduction through
15 mm long M(Zn)-DNA. For comparison, the same
measurements were performed on B-DNA before conver-
sion into M-DNA, and the results show semiconducting
behavior with a band gap of a few hundred meV at room
temperature. The drastic change of DNA conductivity
enabled by engineering normal DNA into M-DNA allows
all-DNA molecular devices to be realized.

The M-DNA used in the experiments has a Zn21 metal
ion replacing the imino proton of every base pair (Fig. 1)
[10,11]. The estimated spacing between metal ions is about
4 Å regardless of sequence [11]. We used phage l-DNA
in our experiments which is about 15 mm long and has
“sticky ends” which can be utilized to bind each end in turn
to an individual electrode [12]. Conversion of the B form
670 0031-9007�01�86(16)�3670(4)$15.00
of l-DNA into M-DNA is accomplished by the addition
of 0.1 mM Zn21 at pH 9.0 [13].

Preliminary conductivity experiments were performed
with DNA strands placed between lithographically pat-
terned gold electrodes on an insulating substrate, similar
to what we used for conductivity measurements on carbon
nanotubes and nanotube heterojunctions [14]. The results
were difficult to quantify as the possible contribution of
the DNA buffer solution on the measured electrical char-
acteristics could not be assessed. We found that exposing
the samples to “freeze-dry” methods could not rule out this
contribution because of the existence of salt bridges formed
on the substrate surface between electrodes. To address
this problem we implemented a new design by placing
DNA between two electrodes separated by a deep physi-
cal gap of width 1 30 mm and practically infinite depth
[15] (Fig. 2). The interelectrode gap width was measured
optically.

Four types of l-DNA samples were prepared for con-
ductivity measurements.

(1) B-DNA in standard buffer at pH 7.5 was dropped
across the electrode gap and then dried in vacuo.

(2) M-DNA was prepared in 0.1 mM Zn21 at pH 9.0
[10,11] and placed across the gap as above.

(3) B-DNA samples were prepared by making use of the
DNA oligomer-based “gluing” technique [12] in which the
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FIG. 1. Base-pairing schemes for M-DNA [10]. The imino
protons with coordination to the N3 position of thymine and the
N1 position of guanine are replaced by the Zn21 ion.
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FIG. 2. Current-voltage curves measured in vacuum at room
temperature on M-DNA (±) and B-DNA (≤) molecules. The
DNA fibers are 15 mm long and the interelectrode spacing is
10 mm. In contrast to the B-DNA behavior, M-DNA exhibits
no plateau in the I-V curve [16]. Lower inset shows a schematic
experimental layout [15]. Upper inset shows two representative
current-voltage curves measured in vacuum at room temperature
on samples of type 3 (Au–oligomer–B-DNA–oligomer–Au in
series) [17].

sticky ends of the DNA were attached to surface-bound
oligomers.

(4) B-DNA at pH 7.5 with 0.1 mM of Zn21. At this
pH M-DNA does not form but the contribution of DNA
surface-bound Zn21 ions on the measured electrical char-
acteristics can be determined.

Conductivity measurements were performed on DNA
bundles (ropes) of �102 molecules each, as estimated from
atomic force microscope (AFM) images (Fig. 3), both at
ambient conditions and in vacuum. An example of current-
voltage (I-V ) curves measured in vacuum (1023 Torr) at
room temperature on samples of types 1 and 2 is shown to-
gether in Fig. 2 for comparison. A semiconductorlike pla-
teau (conductance gap) of about 200 meV is observed for
B-DNA (type 1), whereas this plateau disappears (or, at
least, shrinks to a value which cannot be resolved at room
temperature) in the case of M-DNA (type 2). The similar
current flowing through type 1 and type 2 samples at high
voltages (Fig. 2) strongly suggests a similar number of
DNA strands crossing the gap between electrodes. Thus,
the qualitative difference in I-V characteristics of M- and
B-DNA samples we observed at low bias can only be attrib-
uted to a difference in their conduction mechanisms [16].

Typical I-V curves for samples of type 3 with “glue”
oligomers are shown in the inset of Fig. 2. The recent find-
ing [9] that short DNA oligomers behave like wide-band-
gap semiconductors suggests that in type 3 samples the
oligomer-associated contribution dominates the I-V pla-
FIG. 3 (color). Images of a M-DNA bundle on the surface of
gold electrode (type 2). (a) AFM image of the M-DNA bundle
(scale bar: 1 mm). (b) AFM image of the M-DNA bundle at
high resolution. (c) Cross section made along the white line
in (b) using tapping mode AFM giving a bundle height of
20–30 nm and width of about 100 nm, which implies it con-
sists of &3 3 102 DNA strands [18].

teau when measured in series with the B- (narrow-band
gap) DNA molecules (Au–oligomer–B-DNA–oligomer–
Au in series). This finding is in agreement with our data:
The plateau observed is relatively large and varies between
1–2 V for different type 3 samples.

To verify that the DNA I-V characteristics are not due
to buffer residuals or metallic ions adsorbed on the DNA
surface we performed additional control experiments: For
interelectrode spacing .1 mm we found that filling the
gap with buffer and ZnCl2 even at concentrations 10 times
3671
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exceeding those used in our experiments did not produce
any appreciable signal (noise of ,1 pA amplitude at
1023 Torr vacuum). For further independent confirma-
tion we measured type 4 samples (B-DNA at pH � 7.5 1

0.1 mM of Zn21) and in contrast to unmodified B-DNA
samples of type 1, there was no plateau in the I-V curve.
However, the zero bias conductance was 3 orders of mag-
nitude less than the characteristic M-DNA conductance.

It has been known that for surface states, phonon-
assisted hopping provides the dominant contribution to the
conductivity at room temperatures [19]. We can estimate
the characteristic times of electronic transport through an
M-DNA by calibrating against the result from type 4
samples. Given a residence time tr of a few picoseconds
in the case of type 4, which is normal for a phonon-
assisted charge transfer [19] [s � Ne2d2�Ttr , s being
the conductivity, N being the effective concentration of
electrons, d being the hopping length (base to base dis-
tance), and T being the thermodynamic temperature,
kB � 1], the measured M-DNA conductance implies that
the electronic times te for M-DNA are in the femto-
second range, characteristic of metalliclike behavior [20]
(s � Ne2d2�Tte, t21

e � 1�med2 � ´F , me being the
electron mass, ´F being the Fermi energy, h̄ � 1). Our find-
ings can further be compared with fluorescence quenching
experiments performed on long M-DNA molecules with
fluorescein and rhodamine at opposite ends [21]. A charge
transfer was observed over 500 base pairs in about 3 ns,
which yields a diffusion transfer rate of over 1014 s21

reasserting the metalliclike conduction through M-DNA
molecules.

The nature of electronic transport through B- and
M-DNA depends both on the properties of their internal
structure and the DNA-electrode contact. Taking the com-
mon assumption of tunneling barriers at the DNA-gold
contact [9], the difference between the Fermi level of
the gold electrode and the edge of the molecular band of
B-DNA suppresses tunneling through the electrode-DNA
contact barrier. A large enough voltage bias applied to
B-DNA can remove that difference to make electronic in-
jection from the electrode to DNA feasible, which explains
the plateau in the B-DNA I-V curves [22]. This picture
modifies the Aviram and Ratner model [23] for charge
transfer through organic molecules to accommodate
transport through long DNA sequences [24,25], where an
overlap of electron wave functions creates the “p-way”
taken together with the periodicity of DNA structure,
and molecular band formation can result. Inserting metal
ions results in the formation of a d band aligned with the
electrode Fermi level. As a result, injection of electrons
(or holes) exhibits no voltage threshold and, consequently,
no plateau appears in the I-V dependence.

A shift of I-V curves towards positive voltages observed
for B-DNA (Fig. 4) may be attributed to the buildup of in-
ternal electrical fields due to the presence of a character-
istic double-well (DW) potential [26] associated with the
3672
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FIG. 4. Representative current-voltage characteristics mea-
sured at room temperature on samples of type 1 (B-DNA). The
shift in I-V characteristics towards positive voltages is observed
which disappears when B-DNA is converted into M-DNA form
(inset shows similar symmetric I-V curves obtained for two
representative M-DNA samples).

imino protons in the center of the helix with coordination
to the N3 of thymine and N1 of guanine in every base pair
(Fig. 1). In M-DNA, the imino protons are replaced with
Zn21 substantially deepening the local potential relief due
to the strong hybridization of p-nitrogen and d-zinc elec-
tron states [27]. This, in turn, means sufficient chemi-
cal bond contraction with a DW collapse [26] at room
temperature.

In summary, direct conductivity measurements on M-
and native B-DNA 15 mm long macromolecules indicate
the difference in their conduction mechanisms. The evi-
dence of metalliclike conduction through M-DNA is found,
while B-DNA exhibits the narrow-band-gap semiconduc-
tor behavior. The ability to convert normal DNA into
M-DNA and the resultant drastic change of DNA conduc-
tivity opens up a whole new range of opportunities for mo-
lecular electronic engineering, and provide us a new degree
of freedom in molecular electronics and sensor designs.
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