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Bound Entangled Gaussian States
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We discuss the entanglement properties of bipartite states with Gaussian Wigner functions. For the
separability, and the positivity of the partial transpose, we establish explicit necessary and sufficient
criteria in terms of the covariance matrix of the state. It is shown that, for systems composed of a
single oscillator for Alice and an arbitrary number for Bob, positivity of the partial transpose implies
separability. However, this implication fails with two oscillators on each side, as we show by constructing
a five parameter family of bound entangled Gaussian states.
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I. Introduction.—Many experiments in the young field
of quantum information physics are not carried out on
finite-dimensional quantum systems, for which most of the
basic theory has been developed, but in the quantum optical
setting. In that setting the basic variables are quadratures
of field modes, which satisfy canonical commutation rela-
tions, and hence have no finite-dimensional realizations. It
would seem that the theory therefore becomes burdened
with all the technical difficulties of infinite-dimensional
spaces, while theoreticians are, on the other hand, still
struggling to answer some simple questions about qubit
systems. However, the states relevant in quantum optics are
often of a special type, and for this class the typical ques-
tions of quantum information theory are luckily of the same
complexity as for the usual finite-dimensional systems.

This simple class of states of “continuous variable sys-
tems” is the class of Gaussian states, i.e., those states
whose Wigner function is a Gaussian on phase space. Such
a state is therefore completely specified by its mean and its
covariance matrix, where the mean is irrelevant for entan-
glement questions, because it can be shifted to zero by a
local unitary (phase space) translation. It turns out that the
basic entanglement properties of a Gaussian density matrix
(as a state on two infinite-dimensional Hilbert spaces) can
be translated very nicely into properties of its covariance
matrix (see Section II), so that problems involving Gauss-
ian states are reduced to problems of finite-dimensional
linear algebra rather reminiscent of the problems involv-
ing finite-dimensional density matrices.

For the latter it is well known [1,2] that the positivity
of the partial transpose (“ppt”) is necessary for separabil-
ity, but sufficient only for the smallest nontrivial systems,
namely, systems in dimensions 2 ≠ 2 and 2 ≠ 3. In all
higher dimensions we can find “bound entangled states,”
which are not separable, but nevertheless have a positive
partial transpose, and are hence not distillable [3]. In the
case of continuous variable systems the first nontrivial ex-
amples of this kind were obtained in [4]. In the Gaussian
setting it was shown by Simon [5] that for bipartite systems
with one canonical degree of freedom on each side, i.e.,
once again for the simplest possible systems, the equiva-
lence of ppt and separability also holds. For this system
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another equivalent entanglement criterion was provided in
[6], and it was also shown that non-ppt states are indeed
distillable [7]. In this paper we settle the relationship be-
tween separability and ppt for all higher dimensions, show-
ing that the equivalence holds also for systems of 1 3 N
oscillators, but fails for all higher dimensions. We show
this by giving explicit examples for 2 3 2 oscillators.

The key idea for constructing bound entangled Gaussian
states is the notion of “minimal ppt” covariance matrices.
These are defined as the covariance matrices of ppt Gauss-
ian states, which are not larger (in matrix ordering) than
the covariance matrix of any other ppt Gaussian state. It is
easy to see that a minimal ppt covariance matrix belongs to
a separable state if, and only if, that state is a product state.
Hence bound entangled Gaussians arise from all minimal
ppt covariance matrices, which are not block diagonal.
Numerically, minimal ppt covariance matrices can be ob-
tained very efficiently by successively subtracting rank one
operators from a given covariance matrix. This algorithm
is reminiscent of techniques for density matrices in the con-
text of “best separable approximation” [8]. Running this
procedure for 2 3 2 or larger systems generically gives
bound entangled Gaussian states.

Our paper is organized as follows: In Section II we will
set up the basic notation and the translation of separability
and ppt conditions into properties of covariance matrices
(for separability this appears to be new). We also describe
the minimal ppt covariance matrices. In Section III we
prove the equivalence for the 1 3 N case, and in Sec-
tion IV we present a five parameter family of 2 3 2 bound
entangled states.

II. Gaussian states and entanglement.—A system of f
canonical degrees of freedom is described classically in a
phase space, which is a 2f-dimensional real vector space
X. The canonical structure is given by a 2f 3 2f matrix
s, known as the symplectic matrix, which is antisymmetric
and nonsingular. With a suitable choice of coordinates
(“canonical coordinates”), it can be brought into a standard
form: The 2f variables are then grouped into f canonical
pairs (e.g., position and momentum), for each of which
the symplectic matrix takes the form s � � 0

1
21
0 �, and all

other matrix elements vanish.
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The symplectic matrix also governs the canonical com-
mutation relations for the corresponding quantum system:
if Ra , a � 1, . . . , 2f are canonical operators (for canoni-
cal coordinates these are naturally grouped into f standard
position operators and f standard momentum operators),
the commutation relations read

i�Ra , Rb� � sab1 . (1)

These relations may be exponentiated to the Weyl rela-
tions involving unitaries W�j� � exp�ij ? s ? R�, where
j [ X, and j ? s ? R �

P
ab jasabRb . These Weyl

operators implement the phase space translations. We will
assume that they act irreducibly on the given Hilbert space,
i.e., that there are no further degrees of freedom. Then by
von Neumann’s Uniqueness Theorem [9] the Ra are uni-
tarily equivalent to the usual position and momentum op-
erators in the L 2 space over position space.

For a general density operator r we define the mean as
the vector ma � tr�rRa�, and the covariance matrix g,

gab 1 isab � 2 tr�r�Ra 2 ma1� �Rb 2 mb1�� , (2)

which is well defined whenever all of the unbounded posi-
tive operators R2

a have finite expectations in r. Because
of the canonical commutation relations the antisymmetric
part of the right-hand side is indeed the symplectic matrix,
independently of the state r. The state-dependent covari-
ance matrix g is therefore real and symmetric. Moreover,
g 1 is is obviously positive definite.

A Gaussian state is best defined in terms of its character-
istic function, which for a general state is j � tr�rW�j��.
This should be seen as the quantum Fourier transform [10]
of r, and is indeed the Fourier transform of the Wigner
function of r. Hence we call r Gaussian, if its character-
istic function is of the form

tr�rW �j�� � exp�imTj 2
1
4jT gj� . (3)

Here the coefficients were chosen such that g and m are
indeed the covariance and mean of r, as is readily verified
by differentiation. The necessary condition g 1 is $ 0,
which is equivalent to g 2 is $ 0 by complex conjuga-
tion, is also sufficient for Eq. (3) to define a positive opera-
tor r. We note for later use that a Gaussian state is pure
if, and only if, �s21g�2 � 21 [11], which is equivalent
to g 1 is having the maximal number of null eigenvec-
tors, i.e., the null space N � �F j �g 1 is�F � 0� has
dimension �dimX��2. Note that this null space must al-
ways be considered as a complex linear subspace of �2f ,
the complexification of X. For such a complex subspace
we denote by ReN the subspace of X consisting of all
real parts of vectors in N . Then a Gaussian state is pure
if, and only if, ReN � X.

Let us now consider bipartite systems. The phase space
is then split into two phase spaces X � XA © XB, where
A stands for Alice and B for Bob. This is a “symplectic
direct sum,” which means that s � sA © sB is block di-
agonal with respect to this decomposition. In other words,
Alice’s canonical operators Ra commute with all of Bob’s.
The Weyl operators are naturally identified with tensor
products: W�jA © jB� � W�jA� ≠ W�jB�. We call this
an fA 3 fB system, if dimXA � 2fA, and dimXB � 2fB.

It is clear from (2) and (3) that the covariance matrix of a
product state is block diagonal, and, conversely, a Gaussian
state with block diagonal g is a product state. Separability
is characterized as follows:

Proposition 1: Let g be the covariance matrix of a
separable state with finite second moments. Then there
are covariance matrices gA and gB such that

g $

√
gA 0
0 gB

!
. (4)

Conversely, if this condition is satisfied, the Gaussian state
with covariance g is separable.

In order to show the first statement, suppose that the
given state is decomposed into product states with co-
variance gk and mean mk with convex weight lk . Then
ma �

P
k lkmk

a and, similarly, for the second moments
we have

gab 1 2mamb �
X
k

lk�gk
ab 1 2mk

amk
b� . (5)

Hence the difference between g and the block diagonalP
k lkgk is the matrix

Dab � 2

√X
k

lkmk
amk

b 2
X
k�

lkl�mk
am�

b

!
, (6)

which is positive definite, because
P

jajbDab �P
k� lkl��sk 2 s��2 $ 0, where sk �

P
a jama .

In order to show the converse, let s be the Gaussian
product state with covariance gA © gB, and let g0 � g 2

gA © gB $ 0. Then g0 is the covariance of a classical
Gaussian probability distribution P, and the characteristic
function of the given state r is the product of the character-
istic function of s and the Fourier transform of P. Hence
r is the convolution of s, and P in the sense of [10], which
is the average of the phase space translates W�j�sW �j��

over j with weight P. Since all these states will be product
states, r is separable. �

There are different ways of characterizing the partial
transpose. One simple way is to say that with respect to
some set of canonical coordinates the momenta in Alice’s
system are reversed, while her position coordinates and all
of Bob’s canonical variables are left unchanged. In addi-
tion, the order of factors in the partial transpose of RaRb

is reversed when both factors belong to Alice. When we
replace r in (2) by its partial transpose, we therefore find
the antisymmetric part of the equation unchanged, whereas
gab picks up a factor 21 whenever just one of the in-
dices corresponds to one of Alice’s momenta. Let us call
3659
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the resulting covariance matrix by eg. Clearly, if the par-
tial transpose of r is again a density operator, we must
have eg 1 is $ 0. But this is equivalent to g 1 i es $ 0,
where in es the corresponding components are reversed, so
that es � �2sA� © sB. This form of the condition is valid
even if we do not insist on canonical variables. Combining
it with the positivity condition for Gaussian states we get
the following characterization:

Proposition 2: Let g be the covariance matrix of a
state, with finite second moments, which has positive par-
tial transpose. Then

g 1 i es $ 0, where es �

√
2sA 0

0 sB

!
. (7)

Conversely, if this condition is satisfied, the Gaussian state
with covariance g has positive partial transpose.

When r is separable, Proposition 2 shows the existence
of a block diagonal g0 � gA © gB with g $ g0. Since
gA and gB are covariance matrices in their own right, we
have gA 6 isA $ 0, and similarly for Bob’s side. But
this means that g $ g0 $ 2is and g $ g0 $ 2i es, and
g has positive partial transpose, as a separable density
operator should. We have made this explicit, because it
shows that it may be interesting to see how much “space”
there is between g and 2is and 2i es. This leads to the
central definition of this paper:

Definition: We say that a real symmetric matrix g is
a ppt covariance, if g 1 is $ 0 and g 1 i es $ 0, and
that it is minimal ppt, if it is a ppt covariance, and any ppt
covariance g0 with g $ g0 must be equal to g.

Note that a minimal ppt matrix g is separable if, and
only if, it is a direct sum, i.e., if the corresponding state
factorizes (and is thus a product of pure states). There is a
rather effective criterion for deciding whether a given ppt
covariance is even minimal ppt: First, if there were any
g0 # g with g0 fi g, we can also choose g 2 g0 � D to
be a rank one operator, i.e., a matrix of the form Dab �
jajb . Second, we have g 1 is $ eD for sufficiently
small positive e if, and only if, j is in the support of the
positive operator g 1 is. The same reasoning applies toes, so that g is minimal ppt if, and only if, there is no
real vector j, which is in the support of both g 1 is and
g 1 i es. Rephrasing this in terms of the orthogonal com-
plements of the supports, we get the following character-
ization which we will use later:

Proposition 3: Let g be a ppt covariance, and let N

and fN denote the null spaces of g 1 is and g 1 i es,
respectively. Then g is minimal ppt if, and only if, ReN
and Re fN span X together.

This gives an effective procedure to find a minimal ppt
g0 below a given g: in each step one subtracts the largest
admissible multiple of a rank one operator with vector
j orthogonal to the span of ReN and Re fN , which is
then in the supports of g 1 is and g 1 i es. This will
3660
either increase N or fN , so that a minimal ppt covariance
matrix is reached after a finite number of steps.

III. The 1 3 N case.—This section is devoted to the
proof that, for Gaussian states of 1 3 N systems, where
N is arbitrarily large, ppt implies separability. It is clear
from the previous section that this is equivalent to saying
that every minimal ppt covariance matrix is block diagonal,
i.e., belongs to a product state. So throughout this section
we assume that g is a minimal ppt covariance matrix.

As a first step we get rid of irrelevant pure state factors
in the following sense: Suppose that the two null spaces
have a nontrivial intersection, i.e., there is a F fi 0 with
F [ N > fN . Then �s 2 es�F � �ig 2 ig�F � 0,
so F has nonzero components only in Bob’s part of the
system. So let XC denote the subspace of XB spanned by
the real and imaginary parts of F. Then the restriction of
the state to the subsystem C satisfies the pure state con-
dition (its covariance matrix gC 1 isC has a null vector
by construction). It follows that the density matrix factor-
izes: rA,BnC,C � rA,BnC ≠ rC , where rC is a pure state.
(This conclusion can also be obtained purely on the level
of covariance matrices, by introducing in XB a basis of
canonical variables containing a canonical basis of XC .)
Clearly, the separability of such a state is equivalent to the
separability of r, and the covariance matrix restricted to
XA © XBnC is again minimal ppt. Hence we have reduced
the problem to the analogous one for the smaller space
XA © XBnC .

We may therefore assume that the null spaces N andfN have trivial intersection. This means that we proceed
by contradiction, since we want to prove ultimately that
the state is a product of “irrelevant pure state factors.”

Now let 0 fi F [ N and 0 fi eF [ fN . Then, be-
cause g is Hermitian, we have 	 eF, gF
 � 	g eF, F
. Us-
ing the null space conditions and the skew hermiticity of
s, we can rewrite this as

	 eF, �s 2 es�F
 � 0 . (8)

Now the vector �s 2 es�F must be nonzero, since other-
wise we would have F [ N > fN . This is a condition
on the XA components FA of F, since s and es differ
only on that two-dimensional subspace. By the same to-
ken the XA component eFA of eF must be nonzero. Hence
all vectors �s 2 es�F lie in the one-dimensional subspace
of �XA orthogonal to eFA fi 0. The proportionality con-
stant is thus a linear functional on N vanishing only for
F � 0, which means that N must be one dimensional.
By symmetry, dim fN � 1. By Proposition 3 the spaces
ReN and Re fN together span X, and, since they are two
dimensional, it follows that dimX # 4, i.e., we can have
at most a 1 3 1 system. For such systems our claim has
been shown by Simon [5], and is hence proved.

IV. 2 3 2 bound entangled states.— It was already
mentioned in the introduction that numerical examples of
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minimal ppt covariances, which do not split into gA © gB

are easily generated by the subtraction method. In con-
trast, the subtraction method for 1 3 N systems always
ends up at a block diagonal g. This is rather striking, but
not really conclusive, because the numerical determina-
tion of the null space of a matrix which may have small
eigenvalues may depend critically on rounding errors. We
have therefore prepared the following all-integer 2 3 2
example g:

g �

0BBBBBBBBBBBB@

2 0 0 0 1 0 0 0
0 1 0 0 0 0 0 21
0 0 2 0 0 0 21 0
0 0 0 1 0 21 0 0
1 0 0 0 2 0 0 0
0 0 0 21 0 4 0 0
0 0 21 0 0 0 2 0
0 21 0 0 0 0 0 4

1CCCCCCCCCCCCA
. (9)

The key to getting simple examples is symmetry, which
in turn simplifies the verification of the basic properties.
The most important symmetry in the example is the
multiplication operator S with diagonal matrix elements
�1, 1, 21, 21, 1, 21, 21, 1�. It satisfies Ss 1 esS � 0,
and Sg � gS. Consequently, g 1 is and g 2 i es �
S�g 1 is�S are unitarily equivalent, so it suffices to
check the positivity and to compute the null space of
g 1 is. We note in passing that this unitary equivalence
is not necessary for bound entangled Gaussians, since
generically the spectra of g 1 is and g 1 i es are
different.

Further unitaries commuting with the covariance matrix
(9) are the multiplication operator C with diagonal matrix
elements �1, 21, 1, 21, 1, 21, 1, 21�, the skew symmetric
operator R with R13 � R24 � R75 � R86 � 1, and zero
remaining entries. All these operators have square 61,
and commute with each other and the symplectic forms
up to signs. Therefore, if we start with a generic vector
V1 [ N , the application of R, C, S, and products of these
operators yields eight vectors Vi , which form a basis of �8.
Since these vectors lie in either N , fN or their complex
conjugates, we know how the covariance matrix acts on
them and it is thus determined by g � LV21, where L

and V denote the matrices consisting of column vectors
Lk � gVk (expressed in terms of s, es). The above g is
generated in this manner from
V1 � �21, i, 2, 23i, 1, 2i, 1, 0� . (10)

Then the condition of Proposition 1 is satisfied by con-
struction, and we have only to verify that g 1 is $ 0,
which is again simplified by this operator commuting with
R. Explicitly, we get the eigenvalues 0, 3 2

p
3, 3, 3 1p

3, each with multiplicity 2.
By generalizing this example, we can construct a five

parameter family of bound entangled Gaussian states com-
muting with R, S, and C in the same manner as above. We
start with a generic vector

V1 � �2a, ib, c, 2id, e, 2if, 1, 0�, a, b, . . . , f . 0 .
(11)

Then g being real and symmetric requires d � �bc 1

f��a, and from the characteristic function of 	Vk , Ll 1

isVl
 we obtain that g 1 is $ 0 if, and only if, a # ce,
where equality is ruled out since this would be equivalent
to det�V� � 0.

States obtained from (11) are all of a nonblock diagonal
form similar to (9), and are hence bound entangled.
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