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Photoacoustic Point Source
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We investigate the photoacoustic effect generated by heat deposition at a point in space in an inviscid
fluid. Delta-function and long Gaussian optical pulses are used as sources in the wave equation for
the displacement potential to determine the fluid motion. The linear sound-generation mechanism gives
bipolar photoacoustic waves, whereas the nonlinear mechanism produces asymmetric tripolar waves. The
salient features of the photoacoustic point source are that rapid heat deposition and nonlinear thermal
expansion dominate the production of ultrasound.
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The production of ultrasonic waves from absorption of
electromagnetic radiation, known as the photoacoustic ef-
fect [1], is generally described as arising from a linear
thermal expansion mechanism. The optical deposition of
energy causes a heating and thermal expansion of the ab-
sorber, the motion from expansion acting as a source for
the production of sound waves. Since acoustic radiation is
emitted wherever heat is deposited, the spatial and tempo-
ral character of emitted acoustic wave necessarily carries
information about the geometry and optical properties of
the absorber [1–3], which principle has recently been used
as the basis for a photoacoustic imaging method [4–6]. It
is not surprising that the spatial and temporal profile of a
photoacoustic wave can be used analogously to give in-
formation on the mechanism of sound generation in cases
where the linear thermal expansion is not operative. In this
Letter we describe photoacoustic waves generated by ther-
mal diffusion from a point source for delta function and
long pulse deposition of heat. The waves are shown to pos-
sess features highly characteristic of both the thermal non-
linearity of the fluid and the point character of the source.

For a fluid whose heat capacity ratio can be approxi-
mated as unity, the coupled differential equations [7] for
the pressure and temperature uncouple, giving a heat dif-
fusion equation and a wave equation for pressure. The for-
mer, for a problem with spherical symmetry, is given by

k=2T �r , t� 1 H�r , t� � rcP
≠T �r , t�

≠t
, (1)

where T is the temperature, H is the optical energy de-
posited per volume and time, k is the thermal conductivity,
r is the density, cP is the specific heat capacity, r is the
radial coordinate, and t is the time. Rather than working
with the wave equation for pressure, it is often more con-
venient to work with the equivalent wave equation for the
displacement potential Fµ

=2 2
1
c2

≠2

≠t2

∂
F�r , t� � T �r , t� �b1 1 b2T�r , t�� , (2)

where c is the sound speed. The parameters b1 and b2
are the first two coefficients in a power series expansion
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of the thermal expansion coefficient [1]. The two parame-
ter approximation provides some latitude in describing the
expansion coefficient of a number of fluids, notably H2O,
but, at the same time, restricts on the range of applicabil-
ity of the results given here. The acoustic pressure p and
displacement u are found from the potential as

p � 2r
≠2F�r , t�

≠t2 and u � =F�r , t� . (3)

The substitution of Fy � rF converts the three-
dimensional wave equation (2) into a one-dimensional
equation of the formµ

≠2

≠t2 2 c2 ≠2

≠r2

∂
Fy � rQ�r , t� , (4)

where Q�r , t� is a radial source function odd in r , the
d’Alembert solution to which can be written [8]

Fy�r , t� �
1
2c

Z t

0
ds

Z r1c�t2s�

r2c�t2s�
Q�u, s�u du . (5)

For the present problem, Fy can be decomposed into two
components, Fy � F

y
1 1 F

y
2 , where F

y
1 is a solution to

Eq. (5) with b2 � 0 and F
y
2 is the corresponding solution

with b1 � 0.
Consider the solution of Eq. (2) with only the source

term linear in T with a delta function optical heating pulse.
The temperature distribution found from the heat equation
for such a source for t $ 0 is given by [9]

T �r , t� �
E0s

8rcP

e2r2�4xt

�pxt�3�2 , (6)

where E0 is the fluence in the laser beam, s is the optical
cross section of the particle, and x is the thermal diffu-
sivity given by x � k�rcP . Substitution of Eq. (6) into
Eq. (2) gives an equation for F

y
1 whose solution according

to Eq. (5) is

F
y
1 �r , t� � 2

E0sb1c
16rcP�px�3�2

3
Z t

0

ds
s3�2

Z r1c�t2s�

r2c�t2s�
ue2u2�4xs du . (7)
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The integrand is a perfect differential in u so that the
integration is immediate. Substitution of j � �c2s�x�1�2

into the resulting integral over s gives

F
y
1 �r , t� �

E0sb1

4rcPp3�2

Z �c2t�x�1�2

0
�e2�r̂12j2�2�4j2

2 e2�r̂21j2�2�4j2

� dj ,

(8)

where the dimensionless distance parameters r̂1 and r̂2

have been defined as r̂2 �
c
x �r 2 ct� and r̂1 �

c
x �r 1

ct�. The integrals in Eq. (8) can be evaluated [10] for large
values of �c2t�x�1�2 to give

F1�r , t� �
E0sb1

4prcPr
�1 2 et̂2

� �1 2 u�t̂2�� , (9)

where u is the Heaviside function, F1 is the displacement
potential corresponding to F

y
1 , and t̂2 is the dimensionless

retarded time from the origin. The dimensionless times
corresponding to r̂2 and r̂1 are defined as t̂2 �

c2

x �t 2
r
c �

and t̂1 �
c2

x �t 1
r
c �. The photoacoustic pressure accord-

ing to Eq. (3) is thus given as

p1 �
E0sb1c4

4pcPx2r
�et̂2

�1 2 u�t̂2�� 2 d�t̂2�� , (10)

which is a compressive, rising, exponential wave followed
by a delta function rarefaction, as shown in Fig. 1.

Values of rise time of the waveform predicted by
Eq. (10) for common fluids are so short, e.g., 60 fs for H2O,
that recording of the waveform would present serious ex-
perimental difficulties for this reason alone. It is more use-
ful to determine the limiting form of the wave when the
laser pulse is long compared with x�c2. For long optical
pulses, the photoacoustic pressure is given by convolution
of the pressure response from a delta function heating
pulse from Eq. (10) with the intensity profile of the excit-
ing optical beam. For an optical pulse with an intensity of
the form I�t� �

E0

u f�t�u�, the pressure is thus given as

p �
E0sb1c4

4pucPx2r
�et̂2

u�2t̂2� 2 d�t̂2�� � f�t�u� , (11)

where � indicates a convolution over t, and u is a pulse
width parameter. The convolution integral can be ex-
pressed as a frequency domain integral over the product of
the Fourier transforms of both factors in Eq. (11), which,
after appropriate grouping, can be expressed as

p �
E0sb1c4

4pucPx2r

Ω∑
e2c2u�xjt�uj

2
2

d� t
u �

c2u�x

∏
� f�t̂�

1

∑
e2c2ujt�uj

2c2u�x

∏
� f 0�t̂�

æ
, (12)

where t̂ is given by t̂ � �t 2 r�c��u. The quantity c2u�x

is generally large for common fluids even with a laser pulse
width parameter as small as 1028 s; thus, the exponential
functions in Eq. (12) can be considered as highly peaked
around the zero of the argument of the exponential, t � 0.
FIG. 1. Photoacoustic pressure in arbitrary units versus retarded
time from the origin from (a) the linear temperature contribution,
and (b) from the nonlinear temperature contribution, to the wave
equation for a delta function heating pulse.

Now Laplace’s method of approximation is based on the
limiting form of the argument of an exponential function
as l becomes large,

e2lf̂�t� � d�t 2 t0�
Z `

2`
e2lf̂�x� dx , (13)

where t0 is the unique zero of function f̂�t�, and where it is
sufficient that f̂�t� be non-negative for all t. For the present
problem c2u�x corresponds to l which is large, but finite,
and the point t0 corresponds to 0. Since the required inte-
gral in Laplace’s method is simply

R`
2` exp�2 c2u

x jxj� dx,

it follows that exp�2 c2u

x j
t
u j� � �2x�c2u�d� t

u �. Thus, the
term in Eq. (12) with the convolution over f�t̂� vanishes,
leaving only the term with the derivative of f�t̂�, and the
long pulse photoacoustic response is given by

p �
E0sb1

4pu2cPr
d

dt̂
f�t̂� . (14)

A plot of the acoustic pressure produced by a Gaussian
heating pulse is shown in Fig. 2.

For delta function heating, the d’Alembert solution to
the wave equation with the nonlinear source is

F
y
2 �r , t� � 2

1
128

µ
E0s

rcP

∂2 b2c
�px�3

3
Z t

0

ds
s2

Z r1c�t2s�

r2c�t2s�
ue2u2�2xs du . (15)

Following integration over u, and substitution of z �
x�c2s, Eq. (15) can be written as
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FIG. 2. Photoacoustic pressure versus retarded time t̂ from the
origin for long, Gaussian heating pulses from (–) the linear source,
and (· · ·) the nonlinear source given by Eq. (25). The latter is
found by numerical differentiation of the displacement potential.
The pressure minimum is found numerically to be at t̂ � 0.291.

F
y
2 �r , t� � 2

b2

128

µ
E0s

rcP

∂2µ
c

px

∂3

3
Z `

�x�c2t�
�e2�r̂1z21�2�2z 2 e�r̂2z11�2�2z � dz .

(16)

To determine the far field acoustic pressure where
c2t�x ¿ 0, the range of integration can be taken as 0 to `,
giving the displacement potential corresponding to F

y
2 as

F2�r , t� �

µ
b2

64r

∂ µ
E0s

rcP

∂2µ
c

px

∂3

3

∑
et̂1 K1�t̂1�

t̂1
2 et̂2 K1�jt̂2j�

jt̂2j

∏
, (17)
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where K1 is a modified Bessel function. The photoacoustic
pressure is found from Eq. (3), which for small values of
t̂2, can be approximated as

p1 �
3E2

0s2b2c7

64c2
Pp3rx5r

∑
1

jt̂2j4
2

2
3

d�t̂2�
jt̂2j3

∏
. (18)

As shown in Fig. 1 the photoacoustic pressure is a sharply
rising wave with a discontinuity at t̂2 � 0.

Consider the solution to the wave equation with the non-
linear source term for long laser pulses. Here, since the tem-
perature distribution must be given explicitly before it is
squared and used as a source in the wave equation, the
functional form of the heating pulse must be specified from
the outset. For a Gaussian laser pulse where f�t�u� �
p21�2 exp�2�t�u�2�, the temperature distribution is given
by the convolution integral,

T �r , t� �
E0s

8p2rcPx3�2u

Z `

0

∑
e2r2�2xj

j3�2

∏
e2�t2j�u�2

dj .

(19)

The d’Alembert solution to the wave equation is thus

F
y
2 �r , t� � 2

b2c
128x3

µ
E0s

p2rcPu

∂2

3
Z t

2`
ds

Z r1c�t2s�

r2c�t2s�
dw

Z s

2`
ds1

Z s

2`
ds2

3 w

∑
e2w2�2xs12w2�2xs2

s
3�2
1 s

3�2
2

∏
e2��s2s1��u�22��s2s2��u�2

,

(20)

which, after integration over w, elimination of the term
containing t̂1, and division of the remaining integration
variables by u, gives
F
y
2 �r , t� � 2

cb2

128u

µ
E0s

p2xrcP

∂2 Z t�u

2`
du

Z `

0
du1

Z `

0
du2

∑
e2�u2u1�22�u2u2�2

�u1 1 u2�
p

u1u2

∏
e2��u11u2��u1u2� ��u2t̂�2��2x�c2u��. (21)
Now, for a typical fluid, the quantity x�c2u is small even
for a laser pulse with a duration as short as 1 ns. For a 1 ns
pulse irradiating water, for example, this parameter has a
value of 6.3 3 1025, which means that the last exponen-
tial function in Eq. (21) is highly peaked around the zero of
its argument. Laplace’s approximation method can be used
in the integration over u. The zero of the function is found
at u � t̂, and the required integral in Laplace’s method isR`

2` exp2� u11u2

u1u2
� �u2t̂�2

2x�c2u du � �2px�c2u�1�2�u1u2��u1 1

u2��1�2. After integration over the delta function, Eq. (21)
becomes

F
y
2 �r , t� � 2

p
2 b2

128�pux�3�2

µ
E0s

prcP

∂2

3
Z `

0
du1

Z `

0
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e2�t̂2u1�22�t̂2u2�2

�u1 1 u2�3�2 . (22)

Transformation of the integration variables by the rotation
y1 �

1
p

2
�u1 1 u2� and y2 �

1
p

2
�u1 2 u2� reduces F

y
2 to
F
y
2 �r , t� � 2

p
2 b2

128�pux�3�2

µ
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0
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Z 2y1

y1
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3

∑
e�1�2� �

p
2 t̂2�y12y2��22�1�2� �

p
2 t̂2�y11y2��2

�
p

2 y1�3�2

∏
,

(23)

which can then be written as

F2�r , t� � 2
b2

128p3�xu�3�2r

µ
E0s

rcP

∂2

e22t̂2

3
Z `

0

∑
erf�j�

p
2 �

j3�2

∏
e2�j2�222jt̂� dj . (24)

The acoustic pressure for long laser pulses is thus

p �

µ
b2E2

0s2

128p3c2
Px3�2u7�2rr

∂
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≠t̂2 e22t̂2

3
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0
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p
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which, as is shown in Fig. 2, is an asymmetric tripolar wave.
The waveforms given here necessarily reflect character-

istics of the heat diffusion equation, most notably, a rapid
temperature rise that extends throughout space immedi-
ately after t � 0, which manifests itself in the acoustic
wave as a failure to obey causality. As shown by Eq. (14),
the photoacoustic pressure generated a long light pulse for
the linear problem and is proportional to the first time
derivative of the optical intensity [2], which according to
Ref. [11], is identical to that for a uniformly irradiated
sphere. Thus, no change in the functional form of the pho-
toacoustic wave for a uniformly irradiated particle as its
diameter is reduced to zero is predicted —even the u22

dependence of the amplitude on pulse width is preserved.
For the nonlinear sound generation mechanism, there is an
asymmetry of wave with respect to the retarded time. The
initial deposition of heat at the beginning of the heating
pulse acts to increase the thermal expansion coefficient.
Generation of sound by the subsequent addition of heat
takes place with higher efficiency causing a shift in the
center of the waveform to positive values of the retarded
time. In a qualitative way, the tripolar shapes of either the
short or long pulse response from the T2�r , t� source can
be pictured as the effect of two thermal pulses, the first
giving a compression followed by a rarefaction as the re-
sult of a heating pulse, added together with a rarefaction
followed by a compression caused by a “cooling” pulse a
short time later. The cooling pulse represents the effect of
rapid heat diffusion from an already compressed region of
fluid around the point source that reduces the magnitude
of the temperature squared term to zero launching a wave
that is initially a rarefaction. The reason that the linear
and quadratic temperature terms act so differently is that
the space integral of T �r , t� is a time independent quantity,
whereas the same integral of T2�r , t� vanishes for a long
time. Unlike the linear photoacoustic effect where heat
diffusion is of no consequence, the nonlinear photoacous-
tic effect is highly sensitive to the volume in which heat is
deposited and to the rate at which it diffuses.

The absorption of 100 fJ by room temperature water, an
estimated based on what a carbon particle with a radius
of 100 nm irradiated by the unfocused, 1 cm2 output of
an 16 ns, 1 J Q-switched laser with would absorb, gives
a photoacoustic wave where the nonlinear contribution is
1500 times as large as the linear contribution. The fact that
the thermal nonlinearity dominates the production of sound
from a small source suggests the thermal nonlinearity as
playing a role in generation of the remarkably intense pho-
toacoustic pulses reported by Egerev and co-workers [12]
in microparticulate suspensions. In the case of transient
grating experiments where both the thermal and acoustic
modes of wave motion determine the time dependence of
the diffracted light signal, the T2 source term discussed
here gives an acoustic wave and a vanishing thermal mode
wave. The disappearance of the latter in time provides a
mechanism for production of the “frequency doubled” sig-
nal which heretofore has been attributed only to chemical
reaction [13,14]. Although the role of the thermal nonline-
arity in the expansion coefficient of water has been iden-
tified in the anomalous dependence of the photoacoustic
effect on temperature in water [15–17] at 4 ±C, it is clear
from the present investigation that the thermal nonlinear-
ity is paramount in determining the character of the photo-
acoustic effect in multiphase solutions such as colloids,
micelles, and solid suspensions where a high concentra-
tion of heat results from the absorption of radiation.
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