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We propose a single-sided locally averaged adaptive coupling scheme for the synchronization of spa-
tially extended systems. Coupling and synchronization are analyzed from the viewpoint of image filter
construction and numerical dissipation. Single-sided locally averaged coupling is introduced based on
the resolution argument of control process. Control sensors are adaptively selected and automatically
adjusted according to the magnitude of local oscillations. We demonstrate that the present scheme can
effectively suppress and control spatiotemporal oscillations and, thus, provide a powerful approach for
shock capturing. Both the Navier-Stokes equation and Burgers’ equation are used to illustrate the idea.
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Synchronization phenomenon is of fundamental impor-
tance in telecommunication [1], electronic circuits [2],
nonlinear optics [3], and chemical and biological systems
[4]. The phenomenon has been studied extensively by both
numerical and experimental means. It is believed that an
in-depth study and understanding of synchronization will
greatly benefit the advancement of science and technol-
ogy. Different types of synchronization, such as identical
[1,5], generalized [6], lag, and phase synchronization [7],
were proposed. Recently, synchronization and control of
spatially extended systems have received great attention
[8,9]. For a given system, the degree and rate of synchro-
nization depend vitally on the coupling scheme used. A
variety of coupling schemes, such as unidirectional cou-
pling, receptor-product coupling, adaptive coupling, weak
coupling, strong coupling, global coupling, and local cou-
pling, have been studied. However, single-sided locally
averaged coupling and its effect on the rate and degree of
synchronization have not been addressed yet. Moreover,
very little is reported on synchronization with respect to the
understanding of nonlinear hyperbolic conservation laws,
shock capturing, and, in general, computational methodol-
ogy. The latter has had tremendous impact to science and
engineering. In fact, much of the present understanding
on synchronization was achieved with the aid of numeri-
cal computations.

The main purpose of this Letter is to introduce the
synchronization scheme of single-sided locally averaged
adaptive coupling and to use it for shock capturing. A
nonlinear local gradient based coupling scheme is in-
troduced for spatially extended continuous systems.
Nondecreasing functions and nonincreasing functions
are designed for oscillation reduction and image edge
preservation, respectively. We demonstrate that appro-
priate coupling of two identical dynamical systems can
result in a novel and efficient scheme for shock cap-
turing. The validity and robustness of this scheme are
tested by using Burgers’ equation and the Navier-Stokes
equation.
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For simplicity, we consider an identical synchronization,
where two coupled systems are exactly of the same type
and can be given by a partial differential equation (PDE)
of the form

u1 � F�u, ux , uxx , . . .� 1 c�u, w� , (1)

where c�u, w� is a dissipative coupling term, which is
proportional to the difference between the states of two
systems, �u 2 w�. Junge and Parlitz [9] proposed an in-
teresting sensor coupling scheme, which utilizes the dif-
ference between two localized spatially averaged signals
�u 2 w�. Here, w�x, t� � �1�l�

Rx1l�2
x2l�2 w�y, t� dy is the

local average of w over a length l at the position of a
sensor. The idea behind their coupling scheme is that typi-
cal experimental measuring devices have a finite resolution
l and measure localized spatial averages of some spatial
observable. It is generally true that measuring devices
(sensors) and controllers have a finite resolution. How-
ever, the system being measured might have an unlimited
resolution as it is represented by a continuous PDE. There-
fore, we propose a single-sided locally averaged coupling
scheme,

c�u, w� ~ �u 2 w� , (2)

where w is a localized spatial average of w. It is impor-
tant to understand that the coupling between two systems
given by Eq. (2) is generally designed as a dissipative cou-
pling. However, an interesting observation can be made at
the limit of complete identical synchronization [i.e., when
there is a strong convergence between the two systems
ku�x, t� 2 w�x, t�k ! 0 as t ! `]. From the point of
view of image processing, the local average w is equiva-
lent to the treatment of w by a low-pass filter. Moreover, at
the limit of complete identical synchronization, �u 2 w�
is equivalent to the treatment of u by a high-pass filter
[10]. There is a similar effect on the second system under
the same condition. The effect of the single-sided aver-
aged coupling, �u 2 w�, can also be understood from its
semidiscretized form,
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u�xi , t� 2
1

2n 1 1

i1nX
k�i2n

w�xk , t�, �n � 0, 1, . . .� ,
(3)

where �2n 1 1�Dx � l and Dx is the grid spacing. If n �
0, Eq. (3) reduces to the conventional coupling scheme
�u 2 w�. For n � 1, we have u�xi , t� 2 �w�xi21, t� 1

w�xi , t� 1 w�xi11, t���3, which, at the limit of complete
identical synchronization, becomes

lim
w!u

�u�xi , t� 2 �w�xi21, t� 1 w�xi , t� 1 w�xi11, t���3�

! 2
�Dx�2

3

∑
u�xi11, t� 2 2u�xi , t� 1 u�xi21, t�

�Dx�2

∏
. (4)

Obviously, the term in the last square bracket is a standard
finite difference approximation to the second-order deriva-
tive operator �≠2u���≠x2�. Such an operator is dissipative
in a PDE and is connected to many physical quantities,
such as the kinetic energy of a Hamiltonian system. For
n larger than 1, a straightforward explanation for Eq. (3)
is not available. However, such a case can be studied by
numerical experiments.

The proposed single-sided locally averaged coupling
expression in Eq. (2) can be used for image processing,
pattern recognition, and shock capturing. In these ap-
plications, spatially selected treatment is of practical im-
portance. To achieve spatial selectivity, we introduce the
following adaptively distributed local sensors:

c�u, w� ~ ´�juxj� �u 2 w� , (5)

where the coupling strength ´ is a function of the gradi-
ent measurement juxj. For the purpose of edge-detected
pattern recognition, we choose ´�juxj� as a nonincreasing
function, e.g., ´�juxj� � e exp�2�juxj

2���2s2��, where e

and s are constants. For the purpose of noise reduction
and oscillation suppression, we choose ´�juxj� as a nonde-
creasing function, e.g.,

´�juxj� � ejuxj
1�4, (6)

where e is a constant. In fact, an interesting temporal varia-
tion adapted coupling scheme was proposed by Boccaletti
and Arecchi [11]. The form of the present gradient based
function differs from that in Ref. [11] and obviously, many
other forms can also be used. For the remainder of the
Letter, we restrict ourselves to the application of the
present synchronization scheme to shock capturing.

The solution of the inviscid Burgers’ equation and the in-
compressible Navier-Stokes equations at very low viscos-
ity is often difficult to attain due to the possible existence
of shock front. Shock wave is a common phenomenon in
nature, such as in aerodynamics and hydrodynamics, and
is usually described by hyperbolic conservation laws and
by inviscid hydrodynamic equations. The construction of
numerical schemes that are capable of efficient shock cap-
turing is a challenging task.

To illustrate the present synchronization approach for
oscillation reduction, we first consider Burgers’ model of
turbulence,
ut 1 uux � nuxx , (7)

where u�x, t� is the dependent variable resembling the
flow velocity, and n characterizes the size of the viscos-
ity. Burgers’ equation is an important model for the un-
derstanding of physical flows. We consider Eq. (7) using
the following initial and boundary conditions:

u�x, 0� � sin�px�, u�0, t� � u�1, t� � 0 . (8)

The fourth-order Runge-Kutta scheme is used for the
temporal discretization with a time increment Dt � 0.002.
A discrete singular convolution (DSC) algorithm [12,13]
is utilized for spatial discretization with a total of 101 grid
points in the computational domain. The DSC algorithm
was proposed for computer realization of singular convo-
lutions. The mathematical foundation of the algorithm is
the theory of distribution and wavelet analysis. Its use for
solving differential equations has been extensively tested
[12,13] and further validation is given in Table I. Numeri-
cal results of a third-order upwind scheme for convec-
tion, in association with a fourth-order central difference
scheme for diffusion, is also listed in Table I for a
comparison.

Solving Burgers’ equation at low viscosity is a challeng-
ing task. At n � 0.001, the numerical solution quickly
develops into a sharp shock front near x � 1. Severe os-
cillations occur near the shock front as shown in Fig. 1(a).
It should be pointed out that almost all high order nu-
merical schemes exhibit similar oscillations. To eliminate
oscillations, we employ the single-sided locally averaged
adaptive coupling, Eqs. (5) and (6). Here, w is com-
puted by a local three-term average �n � 1�. Two systems,
which are characterized by two viscosities (n1 � 0.001
and n2 � 0.01), are coupled with a coupling constant of
e � 280. It can be seen from Fig. 1(b) that all spuri-
ous oscillations are eliminated. However, the synchronized
solution is neither the true solution of n � 0.01 nor that
of n � 0.001. Hence, it is desirable to have an oscilla-
tion-free solution at a given low viscosity. To this end,
we design an autosynchronization approach by choosing
two exactly identical systems, i.e., setting n1 � n2 � 0.
As two exactly identical systems are still coupled, oscil-
lations are suppressed to a certain degree, depending on
the coupling constant. For a relatively small coupling
constant of e � 240, the solution is oscillatory at early
times and become essentially nonoscillatory at a later time
[see Fig. 1(c)]. By increasing the coupling constant to
e � 290, we have successfully eliminated all spurious

TABLE I. Errors of the DSC and upwind solutions for Burgers’
equation �n � 0.01�.

DSC Upwind
t L1 L` L1 L`

0.6 4.5�207� 1.4�205� 1.3�204� 3.1�203�
1.4 1.8�209� 4.8�208� 3.2�205� 5.1�204�
2.2 6.0�212� 1.9�210� 1.1�205� 1.3�204�
3.0 2.2�213� 1.4�212� 5.2�206� 4.4�205�
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oscillations as shown in Fig. 1(d). The result of a third-
order upwind scheme is also depicted in Fig. 1(d) for a
comparison. At the shock front, the upwind scheme can-
not completely eliminate oscillations.

To study the size effect of the local averaging and to
compare with the upwind scheme further, we consider
the inviscid �n � 0� Burgers’ equation [Eq. (7)] with a
Riemann-type initial value,

u�x, 0� �

Ω
1, if 0 # x # 0.2
0, if 0.2 , x # 1 . (9)

The spatial and temporal discretizations are the same as
in the previous case. The nonlinear coupling [Eq. (6)] is
used with e � 242, while the size of the local average
in Eq. (3) varies from n � 1 to n � 3. These results, to-
gether with those obtained by using the third-order upwind
scheme, are plotted in Fig. 2. The synchronization result
obtained with n � 1 is perhaps the best available for this
problem. It should be noted that the scheme becomes more
dissipative as the size of local average is enlarged. As a
result, the shock front is more smeared for larger values of
n. As in the previous case, the third-order upwind scheme
is not as effective as the proposed approach for oscillation
suppression.

To further validate the present approach, we consider
the two-dimensional Navier-Stokes equation:

Ut 1 U ? =U � 2=p 1
1

Re
=2U

1 ´�j=Uj� �U 2 W� , (10)

FIG. 1. Synchronization profiles of Burgers’ equations at t �
0.2 (i), 0.4 (ii), 0.6 (iii), 1.2 (iv), and 2.0 (v). (a) e � 0,
solid line: n1 � 0.001, diamonds: n2 � 0.01; (b) e � 280,
solid line: n1 � 0.001, diamonds: n2 � 0.01; (c) e � 240,
n1 � n2 � 0; (d) e � 290, n1 � n2 � 0. The dots in (d) are
obtained by using the upwind scheme.
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with the incompressible condition, = ? U � 0. Here, U �
�u, y�T is the velocity vector, W is the velocity vector of
the second system, p is the pressure, and Reynolds num-
ber of Re � ` defines the Euler equation. The domain of
interest is a square �0, 2p� 3 �0, 2p� with periodic bound-
ary conditions. Depending on the initial values, this sys-
tem can be very challenging to solve. For a smooth initial
value, the problem is analytically solvable and the validity
of the DSC algorithm for this case was tested in Ref. [13].

We now test the present synchronization approach for
the Euler equation with sharply varying initial values

u�x, y, 0� �

8>><
>>:

tanh

µ
2y2x

2r

∂
, if y # p

tanh

µ
3p22y

2r

∂
, if y . p ,

y�x, y, 0� � d sin�x� .

(11)

These initial values describe the flow field consisting of
horizontal shear layers of finite thickness, perturbed by a
small amplitude vertical velocity, making up the bound-
aries of a jet. This problem is not analytically solvable and
is chosen to illustrate the ability of the present approach for
providing very fine resolution even on a relatively coarse
grid. Pioneering work was done by Bell et al. [14] in
this field with a second-order Godunov scheme and a pro-
jection approach. A state-of-the-art high-order essentially
nonoscillatory (ENO) scheme was later constructed by E
and Shu [15] to resolve fine vorticity structures.

We consider parameters d � 0.05 and r � p�15, a
case studied by Bell et al. [14] with three sets of grids
(1282, 2562, and 5122). E and Shu [15] computed this
case by using both a spectral collocation code with 5122

points and their high-order ENO scheme with 642 and
1282 points. The spectral collocation code produced an os-
cillatory solution at t � 10 (see Fig. 1 of Ref. [15]), while
the high-order ENO scheme produced a defect at t � 6 as
the channels connecting the vorticity centers are slightly
distorted (see Fig. 2 of Ref. [15]). In the present simula-
tion, we choose a 642 grid for the computational domain

FIG. 2. A comparison of synchronization and upwind ap-
proaches for solving the inviscid Burgers’ equation (n � 0,
t � 0.6) with a Riemann-type initial value.
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with a time increment of 0.002. The synchronization pre-
scription given in Eqs. (5) and (6) is used for both velocity
components u and y of Eq. (10) with an averaging size
parameter of n � 1 and a coupling constant of e � 280.
The results at different times (t � 4, 6, 8, and 10) are plot-
ted in Fig. 3. It is seen that the present solution is smooth
and stable for this case. In particular, no distortion is found
in vorticity contours at t � 6. For early times, present re-
sults compare extremely well with those of the spectral
collocation code computed with 5122 points. There are no
spurious numerical oscillations during the entire process.

In conclusion, we propose the approach of synchro-
nization as a robust, reliable, and practical algorithm for
shock wave computations. A single-sided locally averaged
coupling scheme is introduced based on the resolution ar-
gument of control sensors. The coupling strength in spa-
tially extended systems is adaptively varied according to
the magnitude of the local gradient of the system. The re-
sulting coupled systems are analyzed from the viewpoint
of image filters and numerical dissipation. The size ef-
fect of the local averaging is studied. The proposed al-
gorithm is validated by using Burgers’ equation and the
incompressible Navier-Stokes equation. A high accuracy
discrete singular convolution algorithm [12,13] is utilized
for the numerical simulation and results are compared with
those obtained by using an upwind scheme.

For Burgers’ equation, computational accuracy and
reliability is tested. At a very low viscosity, Burgers’ equa-
tion develops spurious oscillations, which can be elimi-
nated by coupling to another Burgers’ equation with a
higher viscosity. To make the algorithm practical for
shock capturing at any given viscosity, two truly identical
systems are coupled. It is found that the oscillations can

FIG. 3 (color). The vorticity contours of the synchronization
solution of the 2D Euler equation. Upper left: t � 4; upper
right: t � 6; lower left: t � 8; lower right: t � 10.
be completely suppressed above a minimum coupling
strength.

The scheme becomes more dissipative as the size of the
local average is enlarged, as indicated by solving the in-
viscid Burgers’ equation with a Riemann-type initial value.
The proposed algorithm is found to be more effective than
a third-order upwind scheme for oscillation reduction.

To further validate the present approach for shock
capturing, the Navier-Stokes equation is considered. The
simulation of this system is an acid test for ordinary
methods. The present results are better than those of
the ENO scheme [15]. This indicates that the proposed
approach has a great potential for being used as a practical
algorithm for the simulation of fluid flows and computa-
tional physics in general.
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