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Remote information concentration, the reverse process of quantum telecloning, is presented. In this
scheme, quantum information originally from a single qubit, but now distributed into three spatially
separated qubits, is remotely concentrated back to a single qubit via an initially shared entangled state
without performing any global operations. This entangled state is a single unlockable bound entangled
state and we analyze its properties.
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Quantum entanglement has generated a great deal of
interest recently as the most important resource in quan-
tum information processing. The protocols of super dense
coding [1], quantum teleportation [2], and telecloning [3]
cannot be performed without some form of entanglement
between the parties involved: classical correlations alone
can never achieve the quantum efficiency arising from en-
tanglement. Given that entanglement is a resource, it is
important to be able to quantify it in order to deduce how
effectively we can process information [4]. There have
been a number of suggestions for quantifying entanglement
[5], but the most fruitful method comes from a procedure
known as entanglement distillation [6]. In this procedure,
two distant users, Alice and Bob, share a certain num-
ber of entangled pairs all in the same state r. They then
are allowed to perform local operations and communicate
classically (LOCC) with each other. The question is how
many maximally entangled pairs can they obtain in this
way? The limit of distillation in the infinite number of
initial copies of r is known as the entanglement of dis-
tillation [6]. A natural question to ask is which states r

can be distilled to maximally entangled states? Separa-
ble states r �

P
i pir

i
A ≠ r

i
B are clearly nondistillable.

Surprisingly, however, a recent important discovery by the
Horodecki family showed that there are also some entan-
gled states which cannot be distilled [7]. These states have
appropriately been called bound entangled. They are pe-
culiar as entanglement has to be invested in creating them
by LOCC, but this invested entanglement cannot then be
recovered by LOCC. Bound entanglement has been stud-
ied extensively over the last two years [8]. The Horodeckis
have shown that many copies of a bound entangled state
together with a single “free” (unbound) entangled mixed
state, from which entanglement cannot be distilled non-
collectively [9], can be useful for quasidistillation of en-
tanglement [10]. More recently, it has been found that
entanglement can be distilled from two copies of a bound
entangled state distributed to different parties [11]. Thus,
multiple copies of a bound entangled state can perform
better than classically correlated states. Nevertheless, no
information processing protocol has been found where a
single copy of a bound entangled state performs better
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than classically correlated states. Therefore it seems as
if a single bound entangled state alone is useless for quan-
tum information processing and that we always need to
use additional unbound (or bound) entanglement to achieve
greater-than-classical efficiency. However, as we show in
this Letter, this is not the case.

We present an important protocol where bound entangle-
ment can be utilized effectively and performs better than
any classically correlated states. This protocol is remote
information concentration, the inverse of telecloning [3].
Quantum telecloning, as its name suggests, combines tele-
portation and cloning in such a way that a sender teleports
an unknown qubit state jf� � aj0� 1 bj1� to a number
of spatially separated receivers simultaneously. These tele-
ported qubits cannot, of course, be exact replicas of the
original qubit due to the linear laws of quantum evolution
(“no-cloning theorem”) [12]. However it has been shown
that fidelities as high as allowed by the nonexact cloning
(known as optimal cloning [13]) can be achieved. The op-
timal cloning state for jf� is represented by a three qubit
state
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where the first qubit is an ancilla and the last two qubits
are two optimal clones. Now the question we ask is once a
state has been telecloned to spatially separated parties, can
it then be recreated using only LOCC? The answer is yes
and surprisingly involves a recently constructed unlockable
bound entangled state [14].

The four particle unlockable bound entangled state pre-
sented by Smolin [14] is

rub �
1
4

3X
i�0

jFi� �Fij ≠ jFi� �Fij , (2)

where jFi� represents the four Bell states, jF0� � �j00� 1

j11���
p

2, jF1� � �j00� 2 j11���
p

2, jF2� � �j01� 1

j10���
p

2, and jF3� � �j01� 2 j10���
p

2. This state is
not distillable if we do not allow joint quantum operations
© 2001 The American Physical Society



VOLUME 86, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 8 JANUARY 2001
(i.e., if all four parties only operate locally), but is not sep-
arable either, therefore, is a bound entangled state. How-
ever, if we allow a two qubit joint operation, i.e., Bell joint
measurement on any two qubits, we can obtain a maxi-
mally entangled state for the other two qubits via LOCC.
Thus this state is unlockable. The unlocking mechanism
is based on a joint operation for two out of four qubits.

Before we explain remote information concentration, we
briefly summarize the forward process, telecloning. We
focus on the 1 to 2 telecloning and its reverse in this
Letter. Generalizations to more qubits are possible and
will be investigated elsewhere. The telecloning scheme
[3] allows direct distribution of optimal clones from a
single original qubit state jf� to spatially separated par-
ties using LOCC. In the telecloning scheme, we use an
initially shared entangled channel [15] (telecloning state)

jjtc� �
1
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�j01� 1 j01�� �j01� 1 j01��
æ

, (3)

where the first qubit is an input port of the distributor, the
second qubit is an output port for the ancilla, and the third
and forth qubits are output ports for the optimal clones.
The telecloning protocol [3] is similar to teleportation; the
distributor performs a Bell joint measurement between the
unknown state and the input port qubit, and then the re-
ceivers, who hold output port qubits, perform a single qubit
operation depending on the distributor’s measurement
result.

Now we present our remote information concentration
scheme. From the distributed optimal cloning qubits
shared by the spatially separated parties (Alice who holds
the ancilla qubit and Bob and Charlie who each hold a
clone qubit), the original single qubit state is recreated
at the location of a receiver, David, in our scheme:
jcc�ABC ! jf�D. We employ the unlockable bound
entangled state [Eq. (2)] as an entangled channel for
this scheme. The four qubits of the unlockable bound
entangled state are initially distributed to Alice, Bob, and
Charlie (input port qubits) and David (output port qubit).
The three senders, Alice, Bob, and Charlie, individually
perform Bell joint measurements between their qubits of
the optimal cloning state and their input port qubits. We
stress that no global operation is allowed between qubits
belonging to different parties. One of the four possible
outcomes �Fi� is obtained by the measurement of a party.
All three senders classically communicate their measure-
ment results with David. (2 3 3 � 6 bits of classical
information are communicated in total.) Each Bell mea-
surement result �Fi� is associated with the corresponding
Pauli operators �si�, where s0 � 1, s1 � sz , s2 � sx ,
and s3 � sz ? sx . David performs a Pauli operation
sj , which is the product (up to a global phase factor) of
the three Pauli operators associated with the three Bell
measurements on his output port qubit. The output port
ports
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FIG. 1. Schematic picture showing the concentration of infor-
mation from Alice, Bob, and Charlie at the remote receiver,
David, using an unlockable bound entangled state.

of David is now in the original state jf�D. A schematic
picture of this protocol is shown in Fig. 1. Since we do
not allow joint operations on spatially separated qubits,
the information channel in our scheme is indeed bound
entangled. It is surprising that a bound entangled state can
actually be useful for “transmitting” quantum information.
In the following, we analyze this feature from two points
of view: remote quantum operation and entanglement
structure.

Remote quantum operation is performance of (global)
unitary operations on remote qubits: A unitary opera-
tion U is implemented by an initially shared entangled
channel, Bell measurement, classical communication and
(simple) single qubit operations, instead of directly running
a quantum circuit. This is a generalization of quantum
teleportation [2]. Telecloning [3] and quantum informa-
tion distribution via entanglement [16] are examples of
remote quantum operation for 1 ! N quantum optimal
cloning with d-level particles, which requires one input
port and 2N 2 1 output ports. More general cases re-
quiring more than one input port have been studied by
Gottesman and Chuang [17] in the context of “quantum
computation using teleportation” and “quantum software.”
The initially shared entanglement in the remote quantum
operation scheme functions as quantum software. Accord-
ing to their result, unitary operations which belong to the
Clifford group [18] can be implemented remotely, if we re-
strict the single qubit operations to be the Pauli operations.
The compounding qubits of the shared entanglement need
not be in the same location. In this case, the shared en-
tanglement functions as a transmission channel as well as
quantum software. We consider this most restricted case
of all-separated qubits.

To implement a unitary operation U on a state of three
input qubits �jc��, the entangled channel consists of three
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input port qubits and three output port qubits. For unitary
operations that can be decomposed into CNOT (controlled
NOT) and Hadamard gates, which are members of the Clif-
ford group [18], the entangled channel state is given by

jj�ABCDEF �
7̃X

k̃�0̃

jk̃�ABC ≠ Ujk̃�DEF , (4)

where k̃ is a 3-bit binary number, for example, 0̃ � 000,
1̃ � 001, . . . , 7̃ � 111. The first three qubits are the in-
put ports and the last three qubits are the output ports.
All the qubits of this channel are spatially separated from
each other. We assume that Alice, Bob, Charlie, David,
Elizabeth, and Fred each hold one qubit of the channel
(in this order). Alice, Bob, and Charlie individually per-
form Bell joint measurements on their input qubits (in the
state jc�ABC , the qubits to be processed) and the input port
qubits. David, Elizabeth, and Fred perform an appropriate
Pauli operation depending on the measurement results of
Alice, Bob, and Charlie. The mapping between measure-
ment results and Pauli operations is initially agreed. The
final state of David, Elizabeth, and Fred is Ujc�DEF .

Now we return to reverse optimal cloning. We define a
reverse cloning unitary operator Ur
354
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FIG. 2. Quantum circuit for the unitary operation of reverse
cloning Ur . “A” represents an ancilla qubit, and “B” and “C” are
the optimal clone qubits. The symbol ≤ represents the control
qubit and the symbol © represents the NOT operation.
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where the last two qubits are ancillas that are disentangled
from the first qubit which holds the concentrated single
qubit information. Note that Ur does not initialize the an-
cilla qubits after the operation into the conventional ancilla
state j00�. Ur can be decomposed into just CNOT gates as
shown in Fig. 2. Thus the reverse cloning operation is in
the Clifford group and can be performed by remote quan-
tum operation. Inserting Ur in Eq. (4), we obtain the chan-
nel for the remote reverse cloning:
jjrc�ABCDEF �
1

2
p

2
��j0000� 1 j1111�� j00� 1 �j0101� 1 j1010�� j01� 1 �j0011� 1 j1100�� j10�

1 �j0110� 1 j1001�� j11�� . (6)

In this expression, Alice, Bob, Charlie, and David hold the
first, second, third, and fourth qubits, respectively. The last
two qubits are ancillas and may be separated from the other
qubits (their location is irrelevant). From Eq. (6), we ob-
tain the unlockable bound entangled state rub , if we trace
out the ancilla variables. Since the operations performed
on ancillas do not affect the output port qubit, we can trace
out the ancilla variables from the beginning. Then this
remote quantum operation is equivalent to remote infor-
mation concentration. This is why the unlockable bound
entangled state actually functions as a channel for remote
information concentration.

Next, we analyze the remote information concentration
scheme from the viewpoint of entanglement structure by
considering the amount of entanglement in various sepa-
ration cuts [3]. First, we consider the pure state repre-
sentation of the channel including the ancillas [Eq. (6)].
For simplicity, we denote the six qubits as A, B, C, D,
E, and F. From Eq. (4), we see that the channel can be
considered as a pair of maximally entangled 8-level par-
ticles, if we separate DEF from ABC. This means that
there are 3 ebits of entanglement across the cut ABC:DEF.
This is why the information of three input qubits can be
processed and faithfully transmitted via teleportation from
the three senders to the three receivers. We now con-
sider the entanglement structure of the unlockable bound
entangled state. In our scheme, at least 1 ebit of entan-
glement is required across the ABC:D cut for the faithful
transmission of a single qubit quantum information. We
calculate the relative entropy of entanglement [19] across
the ABC:D cut. Relative entropy of entanglement for
a mixed state is defined by ERE�r� � mins[D S�rjjs�,
where S�rjjs� � Trr logr 2 r logs is the quantum rel-
ative entropy, and the minimum is taken over D, the set of
separable states. We can prove that in our case ERE � 1.
The amount of entanglement across the ABC:D cut is in-
deed 1 ebit. However, as we have described before, there
is no distillable pairwise entanglement in the unlockable
bound entangled state, if no joint operations are allowed
for qubits in different locations. Therefore the 1 ebit of
entanglement across ABC:D does not explain the success-
ful concentration of information. How can the information
be processed and faithfully transmitted only by LOCC?

The answer lies in the optimal cloning state. The three
qubits in the optimal cloning state are actually entangled
with each other. The Peres-Horodecki criterion [20], which
is the smallest eigenvalue of partially transposed reduced
density matrix of an ancilla qubit and a clone qubit rAB �
trCjcc� �ccj, is �1 2

p
17��12 	 20.26. This negativity

shows that each of two clone qubits is entangled (although
not maximally entangled) with the ancilla qubits and this
entanglement is not bound entanglement. We may con-
jecture how information processing and transmission have
been achieved using only a bound entangled state and
LOCC in our scheme as follows: the Bell joint measure-
ment “combines” the optimal cloning state (the input state)
and the bound entangled state (the channel state), which
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is initially “closed” for transmission. The unbound en-
tanglement of the input state provides quantum correla-
tion among the qubits of the bound entangled state. The
quantum correlation “opens” the channel for transmitting
concentrated single qubit information distributed in three
qubits of the input state. Entanglement of the input optimal
cloning state and the unlockable bound entangled channel
state function in a complementary fashion. This result ex-
plains the importance of the ancilla qubit in the optimal
cloning state, since the ancilla qubit is necessary for hold-
ing entanglement.

Another interesting observation is that the unlockable
bound entangled state is also valid for remotely concentrat-
ing information from the spatially separate 3-qubit error
correction state: jce�ABC � aj000� 1 bj111� ! jf�D.
The procedure is similar to the case of optimal cloning.
The only difference is a modification to the mapping
to Pauli operations. David performs an additional s2
if the measurement results from Bob or Charlie, but not
both, belong to the set �jF0�, jF1��. In this case, we may
again consider that the (unbound) entanglement of the
input state jce� opens the bound entangled channel for
transmitting concentrated single qubit information from
the input state. If we consider the quantum state jf� as
a quantum key [21], remote information concentration
together with information distribution [16] may allow
more secure distribution of the quantum key to David via
spatially separated, branched repeaters Alice, Bob, and
Charlie.

Finally, we show that no classically correlated state can
achieve the same task (cf. [5]). In optimal cloning, due
to the linearity of quantum transformations, mixed states
as well as pure can be cloned. The same of course holds
for telecloning. We consider the case when the qubit to
be telecloned is maximally entangled with another qubit
of George. After telecloning the qubit state into the qubits
of Alice, Bob, and Charlie, we perform the reverse pro-
cess and remotely concentrate information at the location
of David. Consequently, the qubits of David and George
become entangled. If a shared state with only classical
correlation could perform this remote information concen-
tration, the procedure would create entanglement between
David and George. This, however, is not possible: en-
tanglement cannot be increased by LOCC. Therefore no
classically correlated state can perform remote information
concentration.

In this Letter we have presented remote information con-
centration, the reverse process of quantum telecloning. It
was shown that, surprisingly, the state needed for this op-
eration is a bound entangled state. We have analyzed the
remote information concentration scheme from two points
of view, considering remote quantum operations and ana-
lyzing the entanglement structure of the bound state and
the input state. We have shown that the unlockable bound
entangled state is a reduced density matrix for the entan-
glement channel of remote reverse cloning, if we trace out
the ancilla qubits of the output state. From our entangle-
ment structure analysis, we have found that the functions
of the entanglement of the optimal cloning state and the
unlockable bound entangled state are complementary. We
have also shown that the unlockable bound entangled state
can be used for remotely concentrating information from
a distributed 3-qubit error correction state, which may be
useful for secure transmission of a quantum key. Further-
more, we showed that no purely classically correlated state
can achieve this task. We hope that our work will stimu-
late more research into the nature of entanglement and its
general usefulness in quantum information processing.
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