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Universal Fluctuations in Heavy-Ion Collisions in the Fermi Energy Domain
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We discuss the scaling laws of both the charged fragments multiplicity n fluctuations and the charge
of the largest fragment Zmax fluctuations for Xe 1 Sn collisions in the range of bombarding energies
between 25A MeV and 50A MeV. We show at Elab * 32 MeV�A the transition in the fluctuation regime
of Zmax which is compatible with the transition from the ordered to disordered phase of excited nuclear
matter. The size (charge) of the largest fragment is closely related to the order parameter characterizing
this process.
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Theoretical description of the fragment production in
heavy-ion (HI) collisions depends on whether the equilib-
rium has been reached before the system starts fragment-
ing. Possibility of the critical behavior associated with
the transition from the particle evaporation regime at low
excitation energies to the explosion of the hot source at
about 5–10 MeV�nucleon cannot be excluded. Unfortu-
nately, this exciting possibility is difficult to study because
all standard models and methods of characterizing differ-
ent phases and transitions of the nuclear matter in HI col-
lisions assume an equilibrium mechanism of the fragment
production.

In this Letter, we shall apply new methods of the theory
of universal fluctuations of observables in finite systems [1]
to examine what can be said in a model independent way
about the fragmentation mechanism and the phase change
in HI collisions in the Fermi energy domain. Our analysis,
which is independent of the assumption of the equilibrium
in the fragments production process, uses the data of the
INDRA multidetector system for Xe 1 Sn collisions at
25 MeV # Elab�A # 50 MeV [2–5].

Several features of finite systems are important if one
wants to study either the criticality or the distance to the
critical point [1]. These are as follows:

(i) The D scaling of the normalized probability distri-
bution P�m��m� of the variable m for different “system
sizes” �m�:

�m�DP�m��m� � F�z�D��, 0 , D # 1 , (1)

z�D� � �m 2 m����m�D, (2)

where �m� and m� are the average and the most probable
values of m, respectively, and F�z�D�� is the positive de-
fined scaling function which depends only on a single
scaled variable z�D�. If the scaling framework holds, the
scaling relation (1) is valid independently of any phe-
nomenological reasons for changing �m� [1]. The scaling
domain in (1) is defined by the asymptotic behavior of
P�m��m� when m ! ` and �m� ! `, but z�D� has a finite
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value. The D-scaling analysis is very robust and can be
studied even in small systems if the probability distribu-
tions P�m��m� are known with a sufficient precision. In
small systems, however, the value of scaling parameter D

may differ slightly from its asymptotic value [1].
(ii) The tail of the scaling function F�z�D�� and the

anomalous dimension g. All these features are related to
the properties of the scaling function which characterizes
the finite system.

If the infinite system experiences a second-order phase
transition, and if m is the extensive (scalar) order parame-
ter, then [1]:

(i) At the critical point, the corresponding finite system
exhibits the “first-scaling law” (D � 1) and the tail of scal-
ing function for large positive z�D�: F�z�D�� � exp�2zñ

�D��,
is characterized by a large value of the exponent ñ �
1��1 2 g� . 2.

(ii) The finite system exhibits the “second-scaling law”
(D � 1�2) in the ordered phase, and the first-scaling law
in the disordered phase. In both cases, the tail of the
scaling function is Gaussian (ñ � 2). Close to the critical
point, one may find also the crossover phenomenon from
the first-scaling to the second-scaling law by the continu-
ous D-scaling law, again with the Gaussian tail of the
scaling function.

If the parameter m is not singular at the transition, then
its probability distribution follows the second-scaling law
with the Gaussian tail.

There are two generic families of the fragment produc-
tion scenarios for which the second-order phase transition
has been identified. The family of aggregation scenarios
contains both equilibrium models such as the Fisher
droplet model, the Ising model, or the percolation model,
and off-equilibrium models such as the Smoluchowski
model of gelation. In these models, the average size of
the largest cluster �smax� is the order parameter [1,6] and
the exponent t of the power-law cluster-size distribution
at the critical point (t . 2): n�s� � s2t is related to the
anomalous dimension as g � 1��t 2 1�. The second
© 2001 The American Physical Society
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family includes fragmentation scenarios and contains
various hybrids of the fragmentation-inactivation-binary
model [7,8]. In this family of models, the average frag-
ment multiplicity �n� is the order parameter of the critical
shattering process, and the exponent t at the critical
point (t , 2) is related to the anomalous dimension as
g � t 2 1. The order parameters for these two different
scenarios are not only relevant in the study of phase
changes in HI collisions but they are also measurable. In
this Letter, we shall investigate the patterns of the largest
fragment charge distribution P�Zmax� and the charged
fragment multiplicity distribution P�n� for different
centrality conditions and bombarding energies in the
Fermi energy domain, using the methods of the theory of
universal fluctuations of observables in finite systems [1].

Figure 1 shows the D-scaling features of P�Zmax� distri-
butions for central Xe 1 Sn collisions at 25 # Elab�A #

50 MeV. In the experiment a great effort was made to well
identify in charge the different fragments produced and es-
pecially the heaviest ones [9,10]. For each collision energy
about 20 000 events are taken into account in the present
analysis. These events are selected with the experimen-
tal centrality condition: complete events (i.e., more than
80% of the total charge and momentum is detected) and
Qflow $ p�3. The latter quantity is a global observable
defined as the angle between the beam direction and the
main emission direction of matter in each event, which
is determined from the energy tensor. It has been shown
for the reactions in the Fermi energy domain that events
with small Qflow are dominated by binary dissipative colli-
sions [3,11,12]. For events with little or no memory of the
entrance channel, Qflow is isotropically distributed. The
upper part of the figure (Fig. 1a) shows that P�Zmax� dis-
tributions for Elab�A � 39, 45, and 50 MeV can be com-
pressed into a single curve in the scaling variables of the
first scaling. The distributions for 25 and 32 MeV, which
show strong deviations with respect to this scaling curve
both near the maximum and in the tail for large z�D�, can
be compressed into another single curve in the variables
of the second scaling, as shown in Fig. 1b. It should be
stressed that we do not optimize the value of D because of
the experimental (number of events) and theoretical (small-
ness of the system) limits, but we study whether the data
is consistent with one of the two limits, D � 1�2 and 1,
which have a particular significance in the scaling theory
of phase transitions.

More straightforward global measure of scaling features
is provided by the cumulant moments: k1 � �m�, k2 �
�m2� 2 �m�2, k3 � �m3� 2 3�m2� �m� 1 2�m�3, etc. In
case of the D scaling, normalized cumulant moments,

K
�D�
q 	 kq��k1�qD, are independent of the system size

�m� [1]. Log of the normalized cumulant moment K 	
K

�D�1�
2 of P�Zmax� is plotted in Fig. 1c versus log of

�Zmax�2, i.e., versus log of �k1�2. The data for different
�Zmax�, i.e., for different bombarding energies, should lie
on a straight line if the D scaling holds. The slope of
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FIG. 1. Different characteristics of the largest fragment charge
probability distributions P�Zmax� for central Xe 1 Sn collisions.
(a) P�Zmax� in the variables of the first-scaling law for Elab�A �
25 (asterisks), 32 (crosses), 39 (triangles), 45 (diamonds), and
50 (circles) MeV. (b) P�Zmax� in the variables of the second-
scaling law for Elab�A � 25 and 32 MeV. (c) The normalized
second cumulant moment K2 (	 k2�k

2
1 ) of P�Zmax� is plotted

as a function of ln�Zmax�2 (	 lnk
2
1 ) together with the statistical

error bars. The lines D � 1 and D � 1�2 are shown to guide
the eyes.

this line gives the value of D. It is seen that the higher
energy branch (Elab�A � 39, 45, 50 MeV) follows the
line D � 1 (the solid line), in agreement with Fig. 1a.
The point for Elab�A � 25 MeV is clearly off this line.
The point for Elab�A � 32 MeV aligns along the line
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D � 1�2 (the dashed line) passing through the point for
Elab�A � 25 MeV, but is also close to the line D � 1.
In this “near-crossing” case, one has to investigate higher
order moments, viz. the whole probability distribution.
Fortunately, Figs. 1a and 1b show clearly that the colli-
sions at 32 MeV�A belong to the branch D � 1�2.

The pattern of charged fragment multiplicity distribu-
tions P�n� does not show any significant evolution with
the bombarding energy (Fig. 2), and the data is perfectly
compressible in the scaling variables of the second scaling,
i.e., the multiplicity fluctuations are small [kq � �k1�q�2]
in the whole studied range of bombarding energies.
The scaling features of experimental P�Zmax�— and
P�n�—probability distributions in Figs. 1 and 2 are
complementary and allow one to affirm that the fragment
production in central HI reactions in the Fermi energy
domain follows the aggregation scenario and exhibits the
transition at Elab�A * 32 MeV between the two phases
of excited nuclear matter with distinctly different patterns
of Zmax fluctuations.

Assuming that the change of the fragmentation regime
is controlled by the source excitation energy, one may ask
to which extent similar scaling features and transitions can
be seen in more peripheral collisions. For that purpose, we
have investigated a sample of events selected with the ex-
perimental condition: complete events and Qflow $ p�18.
This sample contains mostly events of semicentral binary
collisions which keep some memory of the entrance chan-
nel as manifested by the presence of two contributions
in the velocity distribution of Zmax corresponding to the
quasiprojectile and quasitarget [5]. Figure 3a shows that
Zmax distributions for Elab�A � 45 and 50 MeV can be
compressed into a single curve in the variables of the first
scaling. The distributions for 25, 32, and 39 MeV show
significant deviations with respect to this scaling curve,
both at the maximum and in the large-z�D� tail. These three
distributions are shown in Fig. 3b in the variables of the
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FIG. 2. The multiplicity distributions of charged fragments for
central Xe 1 Sn collisions are plotted in the variables of the
second-scaling law. Notation of data at different collision ener-
gies is the same as in Fig. 1.
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second scaling. P�Zmax� distributions for Elab�A � 25 and
32 MeV can be perfectly compressed into a single curve.
The data for Elab�A � 39 MeV is close to this curve but,
nevertheless, shows some deviations for z�1�2� 
 1. This
data, which seems to be intermediate between the scaling
limits D � 1�2 and D � 1, could indicate a continuous
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FIG. 3. Different characteristics of the largest fragment charge
distributions P�Zmax� for Xe 1 Sn collisions. (a) P�Zmax� for
semicentral collisions in the variables of the first-scaling law for
Elab�A � 25 (asterisks), 32 (crosses), 39 (triangles), 45 (full dia-
monds), and 50 (full circles) MeV. (b) P�Zmax� for semicentral
collisions at Elab�A � 25, 32, and 39 MeV in the variables of
the second-scaling law. (c) P�Zmax� for semicentral collisions at
Elab�A � 45 and 50 MeV and central collisions at Elab�A � 39,
45, and 50 MeV in the variables of the first-scaling law. The
notation for central collisions is the same as in Fig. 1.
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change of D in the transition region. There are presently
not enough data to verify this possibility. We note how-
ever, that an optimal data compression for Elab�A � 32
and 39 MeV would indicate D 
 0.6 for the latter one.

The scaling pattern of P�Zmax� in semiperipheral col-
lisions follows a similar general evolution with the bom-
barding energy (the excitation energy) as seen in central
collisions, except that the branch D � 1 in semicentral col-
lisions starts at higher energies than in central collisions.
Figure 3c presents all Zmax distributions which in semi-
central and in central collisions belong to the respective
first-scaling branches. It is nontrivial that these probabil-
ity distributions, which correspond to different selection
criteria, collapse approximately into the unique scaling
curve. This example should encourage further investiga-
tion of the feasibility of semicentral events in these kind of
studies. One should also note that the scaling functions in
the branch D � 1�2 are essentially identical in semicen-
tral and central collisions (compare Figs. 1b and 3b).

The characteristic feature of critical behavior is the
anomalous tail of the scaling function with ñ . 2. Using
all P�Zmax� shown in Fig. 3c, we have fitted the scaling
function F�z�1�� for z�1� . 0 by a exp�2b�z�1� 2 z0�ñ�,
where z0 is the estimate of the most probable value of
the distribution and a, b, ñ are the fitting parameters. We
have found ñ � 1.6 6 0.4, which is incompatible with
typical values �3.5 & ñ & 6� in the critical region for
aggregation scenarios [1]. The same procedure for central
and semicentral collisions in the second-scaling phase
yields ñ � 1.8 6 0.4. Hence, the existing data do not
show the critical behavior in the transition region from
ordered to disordered phase.

In conclusion, we have applied the theory of universal
fluctuations in the finite systems [1] to the symmetric
HI reactions in the Fermi energy domain. This theory
provides rigorous methods to characterize critical and off-
critical behaviors both in equilibrium and off-equilibrium
finite systems. This is an important novel aspect of the
present analysis. Convincing scaling behavior of the
Zmax — and n—distributions have been found in central
collisions. The present analysis shows that the fragment
production in central HI collisions around the Fermi en-
ergy is governed by the aggregation scenario with �Zmax�
as the order parameter. The change of the regime of Zmax
fluctuations from the second scaling at low energies to the
first scaling at higher energies, with the Gaussian tail of
the scaling function in both regimes, is compatible with
the transition from the ordered phase to the disordered
phase. The scaling curves determined from central and
semicentral collisions are the same, but the bombarding
energy corresponding to change in the scaling behavior
is higher for more peripheral collisions, in accordance
with the expected stronger contribution of nonequilibrium
effects in these collisions. The critical region, if it exists
in the nuclear fragmentation process, should be searched
for in the narrow window of bombarding energies close to
Elab�A � 32 MeV. Its signature would be the anomalous
tail ñ . 2 of P�Zmax�, in the case of the second-order
phase transition, or the double-hump shape of P�Zmax�
distribution for the first-order phase transition [1]. Future
studies of symmetric HI reactions, performed in small
steps of bombarding energies, will hopefully allow one to
distinguish between the crossover phenomenon and the
other two scenarios which invoke existence of the phase
transition.
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