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Unitarity Bounds and the Cuspy Halo Problem
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Conventional cold dark matter cosmological models predict cuspy halos which are in apparent conflict
with observations. We show that unitarity arguments imply interesting constraints on two proposals to
address this problem: collisional dark matter and strongly annihilating dark matter. Efficient scattering
in both implies m & 12 GeV and m & 25 GeV, respectively. We also show that the strong annihilation
in the second scenario implies the presence of elastic scattering. Recent evidence suggests a collisional
scenario where the cross section scales inversely with velocity —we argue superelastic processes are
likely involved. Exceptions and implications for searches are discussed.
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I. Introduction.—There is a long history of efforts to
constrain dark matter properties from galactic structure
(e.g., [1]). Recent numerical simulations [2] sharpen the
predictions of cold dark matter (CDM) structure forma-
tion models, and apparent discrepancies with the observed
properties of structures from galactic to cluster scales are
uncovered. The main one that has attracted a lot of atten-
tion is the cuspy halo problem, namely, that CDM models
predict halos that have a high density core or have an inner
profile that is too steep compared to observations ([3], but
see also [4]). This has encouraged several proposals that
dark matter might have properties different from those of
conventional CDM (see [5]and summary therein).

On the other hand, general principles of quantum me-
chanics impose nontrivial constraints on some of these
models. We focus here on the proposals of collisional
or strongly self-interacting dark matter (SIDM) by [6]
and of strongly annihilating dark matter (SADM) by [7].
Both require a high level of interaction by particle physics
standards: an elastic scattering cross section of sel �
10224�mX�GeV� cm2 for the former and an annihilation
cross section of sannyrel � 10228�mX�GeV� cm2 for the
latter, where mX is the particle mass, and yrel is the rela-
tive velocity of approach. The proposed dark matter is
therefore quite different from the usual candidates such as
the axion or neutralino. We show that the unitarity of the
scattering matrix, together with a few reasonable assump-
tions, imposes interesting particle mass bounds as well
as other physical constraints. This is done while making
minimal assumptions about the nature of the interactions.
Our results complement constraints from experiments or
astrophysical considerations, e.g., [8].

Griest and Kamionkowski [9] previously derived similar
mass bounds related to the freeze-out density of thermal
relics, assuming two-body final states. In section II, we
provide a general derivation for arbitrary final states using
the classic optical theorem [10]. We summarize our find-
ings in section III, discuss exceptions to our bounds, and
discuss other solutions to the cuspy halo problem.
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II. Deriving the unitarity bounds.—Different versions
of the unitarity bounds can be found in many textbooks,
and can be most easily understood using nonrelativistic
quantum mechanics (e.g., [11]), which is probably ade-
quate for our purpose. However, the results and derivation
given here might be of wider interest, e.g., for estimating
thermal relic density. Here we follow closely the field the-
ory treatment of [12].

The optical theorem [10] is a powerful conse-
quence of the unitarity of the scattering matrix S, i.e.,
SyS � 1, which implies �1 2 S�y�1 2 S� � �1 2 Sy� 1

�1 2 S�, orZ
dg �bj1 2 Sjg� �gj1 2 Syja� � 2 Re�bj1 2 Sja� ,

(1)

where a and b represent two specified states and g repre-
sents a complete set of states with measure dg. By using
the definition of the scattering amplitude Aba ,

�bj1 2 Sja� � 2i�2p�4d4� pb 2 pa�Aba , (2)

where pb and pa are the total four-momenta, one obtainsZ
dg �2p�4d4� pa 2 pg� jAgaj

2 � 2 ImAaa (3)

if b � a in Eq. (1). We are interested in the case where
a represents a two-body state of X 1 X or X 1 X̄ ap-
proaching each other. The final state g, on the other hand,
is completely general, and the integration over g covers the
entire spectrum of possible final states. To be more precise,
suppose ja� � jk1, sz

1; k2, sz
2; n� where sz

1 and sz
2 represent

the spin states of the two incoming particles with spins s1
and s2 (in our particular case, s1 � s2), while k1 and k2
are their respective four-momenta, and n labels the particle
types (e.g., mass, etc.). Recalling that ds�dg ~ jAgaj

2,
Eq. (3) gives, in the center-of-mass (c.m.) frame (adopted
hereafter, i.e., k1 1 k2 � 0),Z

dg
ds

dg
�a ! g� �

ImAaa

2�E1 1 E2� jk1j
, (4)
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where the left-hand side is exactly the total cross section. This is the optical theorem. It states that the total cross
section for scattering from a two-body initial state to all possible final states equals the imaginary part of the two-body
to two-body forward scattering amplitude.
To use this theorem, we expand the scattering amplitude in terms of partial waves, i.e., states labeled as
jktot, Etot, j, jz , �, s, n�, where ktot is the total linear momentum (� 0 in the center of mass frame), Etot is the total
energy, j is the total angular momentum, jz is its z component, � is the orbital momentum, and s is the total spin. By
inserting appropriate complete sets of partial wave outer products into Eq. (2), we obtain

Aba � 4i�2p�2�E0
1 1 E0

2�jk0
1j	

1�2�E1 1 E2�jk1j	1�2
X
j,jz

X
�0,s0,�,s

��0s0n0j1 2 Sj�sn�j,Etot

3
X

�z0,sz0

�s0sz0 j sz0
1 sz0

2 �s01,s02 �jjz j �z0sz0��0,s0�k̂0
1 j �0�z0�

X
�z ,sz

�ssz j sz
1sz

2��
s1,s2

�jjz j �zsz��
�,s�k̂1 j ��z�� , (5)
where the crucial assumption is that S is rotationally in-
variant and so j and jz are conserved, in addition to energy
conserving. The notation ��0s0n0j1 2 Sj�sn�j,Etot empha-
sizes that S is diagonal in j, jz , and Etot but the jz depen-
dence drops out because S commutes with Jx 6 iJy . The
inner products �ssz j sz

1sz
2�s1,s2 and �jjz j �zsz��,s give the

Clebsch-Gordon coefficients, and �k̂1 j ��z� � Y��z �k̂1� is
the spherical harmonic function. We assume k̂1 � ẑ, in
which case Y��z �k̂1� � d�z ,0

p
2� 1 1��4p�. The index b

denotes a two-body final state jk0
1, s01; k0

2, s02; n0�.
By setting b � a, and averaging over the spin states

(i.e., �2s1 1 1�21�2s2 1 1�21
P

sz
1,sz

2
) on both sides of

Eq. (4), the optical theorem, we obtain [12]

stot �
2p

jk1j2�2s1 1 1� �2s2 1 1�

X
j

�2j 1 1�

3
X
�,s

Re��snj1 2 Sj�sn�j,Etot . (6)

This gives the total spin-averaged cross section for scatter-
ing from X 1 X or X 1 X̄ to all possible final states.

For X 1 X̄ annihilation, we exclude from the above
the contribution due to elastic scattering (where the type
and mass of particles do not change, i.e., X 1 X̄ ! X 1

X̄, implying jk0
1j � jk1j) [9]. To do so, we need the

following expression for two-body to two-body scattering
cross section:

ds

db
db �

jAbaj
2

4�E1 1 E2� jk1j
�2p�4d4� pb 2 pa�db ,

(7)

We average over initial spin states and integrate over out-
going momenta, but focus on the elastic contribution (n0

in jb� � jk0
1, s01; k0

2, s02; n0� is set to n in ja�) [12]:

sel �
p

jk1j2�2s1 1 1� �2s2 1 1�

X
j

�2j 1 1�

3
X

�,s,�0,s0
j��0s0nj1 2 Sj�sn�j,Etot j

2. (8)

The above is the total cross section for elastic scattering
(note, the same expression also describes X 1 X ! X 1

X elastic scattering) that has to be subtracted from stot to
yield the total inelastic scattering cross section, which is
relevant for annihilation into all possible final states:
3468
sinel �
p

k2
1�2s1 1 1� �2s2 1 1�

X
j

�2j 1 1�

3
X
�,s

∑
1 2 j��snjSj�sn�j2

2
X

�0fi�,s0fis

j��0s0nj1 2 Sj�sn�j2
∏

. (9)

From Eqs. (6) and (9), we can derive two bounds,

stot # 4p�jk1j
2�2s1 1 1� �2s2 1 1�	21

X
j

X
�,s

2j 1 1 ,

(10)

sinel # p�jk1j
2�2s1 1 1� �2s2 1 1�	21

X
j

X
�,s

2j 1 1 .

(11)

The first inequality uses j��snjSj�sn�j2 # 1, obtained
from

R
dg ��snjSyjg� �gjSj�sn� $ j��snjSj�sn�j2 and

SyS � 1. A similar bound can be derived for sel as well,
which coincides exactly with that for stot.

We pause to note that the above bounds assume only
unitarity and the conservation of total energy and linear
and angular momentum. No assumptions are made about
the nature of the particles, whether they are composite or
pointlike. Nor do we assume the number of particles in
the final states. To obtain useful limits from the bounds,
we take the low velocity limit. Assuming the scattering
amplitude Aba is an analytic function of k1 as k1 ! 0
(exceptions will be discussed in section III), and noting
that k��k̂j��z� is a polynomial function of k, we expect
the � partial wave contribution to Aba [Eq. (5)] to scale
as jk1j

�. This means that, in the low velocity limit, as
is relevant for our purpose (typical velocity dispersion in
halos range from 10 to 1000 km�s ø c), the � � 0 or
s-wave contribution dominates. Setting � � 0 in Eqs. (10)
and (11):

stot # 16p��mXyrel�2, sinelyrel # 4p��m2
Xyrel� ,

(12)

where jk1j
2 � k2

1 � m2
X jv2 2 v1j

2�4 � m2
Xy

2
rel�4 is used.

The second inequality agrees with [9]. Hence,
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stot # 1.76 3 10217 cm2

∑
GeV
mX

∏2∑
10 km s21

yrel

∏2

, (13)

sinelyrel # 1.5 3 10222 cm2

∑
GeV
mX

∏2∑
10 km s21

yrel

∏
.

(14)

Furthermore, if sinel is bounded from below, say sinel $

sann, one can derive a lower bound on sel using Eqs. (8)
and (9), and setting � � 0. Defining �X�J � ��2s1 1

1� �2s2 1 1�	21
P

j,�,s�2j 1 1�X, using S at the moment
to denote ��snjSj�sn�, and noting that �1�J � 1 for
� � 0, it can be shown that �p�k2

1� �1 2 �jSj�2
J� $ �p�

k2
1� �1 2 �jSj2�J� $ sinel $ sann, which implies �jSj�J #p
1 2 k2

1sann�p. Also, sel $ �p�k2
1� �j1 2 Sj2�J $

�p�k2
1� ��1 2 jSj�2�J $ �p�k2

1� �1 2 �jSj�J�2. Combining,
we have

sel $ �p�k2
1� �1 2

p
1 2 k2

1sann�p 	2. (15)

This tells us that the elastic scattering cross section cannot
be arbitrarily small given a nonvanishing inelastic cross
section, e.g., via annihilation.

The above three bounds are the main results of this
section. Two more results will be useful for our later
discussions. For two-body to two-body processes, recall
that the �, �0 contribution to Aba scales as jk1j

�jk0
1j

�0

. By
using ds�dV � jAbaj

2�jk0
1j�jk1j���64p2�E1 1 E2�2	

[obtained from Eq. (7) by integrating over b, except for
solid angle V], it can be seen that for elastic scattering,
where jk0

1j � jk1j,

ds�dV ! const�1 1 O�yrel�	 (16)

as jk1j ! 0. For inelastic scattering where the system
gains kinetic energy by losing rest mass (e.g., deexcita-
tion of a composite particle or annihilation), since jk0

1j
approaches a nonzero value as jk1j ! 0, we have

ds�dV ! �const�yrel� �1 1 O�yrel�	 (17)

instead in the low velocity limit. The opposite case where
the particle gains mass is discussed in [12].

III. Discussion.—We can derive the following four con-
straints for strongly self-interacting dark matter [6] and
strongly annihilating dark matter [7].

(i) The range sel � 10224 10223 cm2�mX�GeV� is
given by [5] for SIDM to yield the desired halo properties.
Using the lower sel, and yrel � 1000 km�s as appropri-
ate for clusters, we obtain from Eq. (13) mX & 12 GeV
for collisional dark matter.

(ii) The annihilation cross section from [7], sann 3

yrel � 10228 cm2�mX�GeV�, together with Eq. (14) and
yrel � 1000 km�s, gives us a bound of mX & 25 GeV for
strongly annihilating dark matter.

(iii) For SADM, efficient annihilation (a form of inelas-
tic scattering) inevitably implies some elastic scattering as
well. From Eq. (15), and using yvel � 1000 km�s as be-
fore, we have
sel $ 4 3 10222 cm2�GeV�mX	2

3 �1 2
p

1 7 3 1025�mX�GeV�3 	2. (18)

There are two simple limiting cases: when mX is close to
the upper bound of 25 GeV, sel * 4 3 10222 cm2; when
mX is small, sel * 5 3 10231 cm2�mX�GeV�4. Hence,
elastic scattering is inevitable in this scenario, but can be
reduced by having a sufficiently small mass.

(iv) Recent simulations suggest that the simplest version
of SIDM might fail to match simultaneously the observed
halo properties from dwarf galaxies to clusters [5,13] (see
also [14]), which have yrel ranging over 3 orders of mag-
nitude. It was suggested that an elastic scattering cross
section of s ~ 1�yrel might solve the problem. But, as
we have argued in Eq. (16), elastic scattering generally
implies s ! const in the small velocity limit. Hence,
s ~ 1�yrel likely requires inelastic processes. As Eq. (17)
shows, processes in which the kinetic energy increases
(jk0

1j . jk1j in c.m. frame) can give such a velocity de-
pendence. SADM provides a concrete example. More
generally, the net kinetic energy increase (superelasticity)
must be taken into account when considering the viabil-
ity of a model with s ~ 1�yrel, e.g., it may delay core
collapse and make the core larger. Note, however, that
the general considerations in the last section do not for-
bid an elastic cross section that increases as yrel decreases,
e.g., the O�yrel� term in Eq. (16) can have a negative co-
efficient. A 1�yrel power law might be used to approxi-
mate such a cross section, but likely only for a limited
range of yrel. An example is the neutron-neutron scatter-
ing cross section, which approaches a constant for jk1j &

1022 GeV, and scales roughly as 1�yrel only for 1022 &

jk1j & 5 3 1022 GeV [15].
It is helpful to mention here the possible exceptions to

the above limits. Our bounds are obtained from Eqs. (13)
and (14), which are the � � 0 (s-wave) versions of
Eqs. (10) and (11). The argument for putting � � 0 in
the small velocity limit assumes the analyticity of Aba

at k1 � 0. The latter breaks down if the interaction is
long ranged, e.g., Coulomb scattering. This is unlikely
to be relevant, because there are strong constraints on
dark matter with such long-range interaction [16]. Our
argument for the dominance of s-wave scattering can also
be invalid if there is a resonance. However, given that
the scattering cross section should vary smoothly over 3
orders of magnitude in velocities from dwarfs to clusters,
a resonance seems unlikely. Finally, the most likely
situation in which the bounds break down is if the particle
has a large enough size, or the interaction has a large
enough effective range, R, such that jk1jR . 1 (e.g., see
[17]). In such cases, higher partial waves in addition to
s waves, generally contribute, and stot & 64pR2 and
our arguments turn into a limit on R [9]. The condition
jk1jR . 1 gives the most stringent constraint on R
for yrel � 10 km�s, as appropriate for dwarf galaxies:
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R * 1029 cm�GeV�mX�. One can compare this with R
for neutron-neutron scattering �10213 cm [15].

It is intriguing that the halo structure might be telling
us the elementary properties, in particular the mass, of
dark matter. It is interesting that several proposals to ad-
dress the cuspy halo problem, such as warm dark matter
[18] and fuzzy dark matter [19], make explicit assump-
tions about the mass of the particles —mX � 1 keV and
mX � 10222 eV, respectively. For SIDM and SADM, as-
trophysical considerations generally put constraints only
on the cross section per unit mass. We have shown here
that unitarity arguments imply a rather modest mass for
both scenarios as well. It is also worth pointing out that
our arguments, with suitable modification to take into ac-
count Bose enhancement and multiple incoming particles,
can be extended to cover dark matter in the form of a Bose
condensate, as has been proposed as yet another solution
to the cuspy halo problem [20]. They generally require
small masses as well, &10 eV.

A few issues are worth further investigation. Wandelt
et al. [8] recently argued that a version of SIDM, where
the dark matter also interacts strongly with baryons, is
experimentally viable, but requires mX * 105 GeV, or
mX & 0.5 GeV. Our bound here is inconsistent with the
large mass region (but see exceptions above); experimen-
tal constraints on the low mass region will be very in-
teresting �sel & 10225 cm2�. It would be useful to find
a micro-physics realization of the collisional scenario or
its variant, where s scales appropriately with velocity to
match observations. The impact of inelastic collisions on
halo structures is worth exploring in more detail. It is also
timely to reconsider possible astrophysical solutions to the
cuspy halo problem, such as the use of mass loss mecha-
nisms [21]. We hope to examine some of these issues in
the future.
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