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Steady-State Thermodynamics of Langevin Systems
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We study Langevin dynamics describing nonequilibirum steady states. Employing the phenomenologi-
cal framework of steady-state thermodynamics constructed by Oono and Paniconi [Prog. Theor. Phys.
Suppl. 130, 29 (1998)], we find that the extended form of the second law which they proposed holds for
transitions between steady states and that the Shannon entropy difference is related to the excess heat
produced in an infinitely slow operation. A generalized version of the Jarzynski work relation plays an
important role in our theory.
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The second law of thermodynamics describes the funda-
mental limitation on possible transitions between equilib-
rium states. In addition, it leads to the definition of entropy,
in terms of which the heat capacity and equations of state
can be treated in a unified way.

In contrast to equilibrium systems, with their elegant
theoretical framework, the understanding of nonequilib-
rium steady-state systems is still primitive. The broad goal
with which we are concerned in this paper is to estab-
lish the connection between the phenomena displayed by
nonequilibrium steady states and thermodynamic laws. We
expect that a unified framework that describes both equi-
librium and nonequilibrium phenomena can be obtained
by extending the second law to the state space consisting
of equilibrium and nonequilibrium steady states. There
have been several attempts to construct such a framework
[1–4]. Among them, a phenomenological framework pro-
posed by Oono and Paniconi seems most sophisticated, and
their framework has been named “steady-state thermody-
namics” (SST) [4].

Oono and Paniconi focused on transitions between
steady states and distinguished steadily generated heat,
which is generated even when the system remains in a
single state in the state space and the total heat. They call
the former the “housekeeping heat.” Subtracting the house-
keeping heat from the total heat defines the excess heat,
which reflects the change of the system in the state space:

Qex � Qtot 2 Qhk . (1)

Here Qtot and Qhk denote the total heat and the housekeep-
ing heat, respectively. By convention, we take the sign of
heat to be positive when it flows from the system to the
heat bath.

For equilibrium systems, Qex reduces to the total heat
Qtot, because in this case Qhk � 0. Because any proper
formulation of SST should reduce to equilibrium thermo-
dynamics in the appropriate limit, Qex should correspond
to the change of a generalized entropy S within the SST.
Here we treat systems in contact with a single heat bath
whose temperature is denoted by T , so that the second law
of SST reads [4]

TDS $ 2Qex . (2)
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The equality here holds for an infinitely slow operation in
which the system is in a steady state at each time during
a transition. (We call such a process a “slow process.”)
That is, the generalized entropy difference DS between
two steady states can be measured as 2Qex�T resulting
from a slow process connecting these two states. This al-
lows us to define the generalized entropy of nonequilib-
rium steady states experimentally, by measuring the excess
heat obtained in a slow process between any nonequilib-
rium steady state and an equilibrium state, whose entropy
is known.

These are phenomenological considerations and they
should ultimately be confirmed through experiments. As
a preliminary step toward this confirmation, in this Letter,
we find support for the validity of the above discussion by
studying a simple stochastic model. With the same moti-
vation, Sekimoto and Oono considered a simple Langevin
system and defined the quantity Qex [5,6]. However, this
nonequilibrium system reduces to an equilibrium system
through a suitable transformation of variables and hence
lacks generality. Also, one of the present authors has found
that the minimum work principle holds for certain types of
transitions between steady states [7], with some assump-
tion regarding the steady-state measure. In this Letter, we
derive the inequality (2) in a more general context and
show that the equality holds for slow processes. This result
relates the excess heat to the generalized entropy.

We consider the dynamics of a Brownian particle in a
circuit driven by an external force. These dynamics are
described by the Langevin equation

g �x � 2
≠U�x; l�

≠x
1 f 1 j�t� , (3)

where j�t� represents Gaussian white noise whose inten-
sity is 2gkBT . We employ periodic boundary conditions,
and thus the particle flows due to the nonconservative force
f. This simple nonequilibrium system was investigated by
Kurchan with regard to the fluctuation theorem [8]. Tran-
sitions between steady states are realized by changing the
parameters l and f. We assume that if the system is left
unperturbed, it eventually reaches a steady state which is
uniquely determined by the parameter values. Although
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we consider an explicitly one-dimensional system for sim-
plicity, multidimensional cases, including many-particle
systems, are essentially the same.

We write the steady-state probability distribution func-
tion as rss�x; a�, where a denotes the set of control pa-
rameters of the system, l and f. Then we manipulate
the system by changing the value of a during the inter-
val from t � 0 to t � t�. We assume that the system is
initially in a steady state, and after the completion of the
manipulation it converges to a new steady state. Let t de-
note the time at which the system reaches the new steady
state �0 , t� , t�. We discretize �0, t� as �t0, t1, . . . , tN �.
We denote the value of a at the ith time step by ai . This
value changes at each time step from time t0 until time
tM � t�, while after this time it remains fixed: ai � aM

for i $ M. We also write x�ti� as xi . We consider the
limit of an infinitely fine discretization by keeping t� and
t fixed and taking N ! `.

Let us introduce a new quantity f�x; a� defined by

f�x; a� � 2 logrss�x; a� , (4)

where rss�x; a� is the probability distribution function of
the steady state corresponding to a. Let P�x0 j x; a� be the
transition probability from x to x0 in one time step (whose
length is Dt � t�N) for a given value of a. Note that by
definitionZ

dx0 P�x j x0; a�rss�x0; a� � rss�x; a� . (5)

Then for a given sequence �x0, x1, . . . , xN �, which is col-
lectively denoted by �x�, the average of a quantity g��x��
is written as

�g� 	
Z NY

i�0

dxi

√
N21Y
i�0

P�xi11 j xi; ai�

!
rss�x0; a0�g��x�� ,

(6)
where the symbol 	 expresses that this is an approximate
equality that becomes exact in an appropriate, infinitely
fine discretization limit of N ! `.

Now, in order to derive Eq. (2) for the system described
by Eq. (3), we utilize a Jarzynski-type equality. For tran-
sitions between isothermal equilibrium states, it is known
that the following equality holds between the work done to
the system W and the equilibrium Helmholtz free energy
difference DF [9]:

�e2bW �c � e2bDF . (7)

Here b � 1�kBT and �?�c denotes the average over all
possible histories with respect to equilibrium fluctuations.
Note that the minimum work principle �W �c $ DF im-
mediately follows from this relation, due to the Jensen in-
equality �ex� $ e�x�. In a similar way, we now set out to
derive Eq. (2) through the somewhat generalized version
of Eq. (7)

�exp�2bQex 2 Df�� � 1 , (8)

where Df � f�xN ; aN � 2 f�x0;a0�.
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We start with the identity*"
N21Y
i�0

rss�xi11; ai11�
rss�xi11; ai�

#+
	 1 . (9)

This follows from Eqs. (5) and (6). Rewriting Eq. (9)
using f, we have*

exp

"
N21X
i�0


2f�xi11;ai11� 1 f�xi11; ai��

#+
	 1 .

(10)
Taking the limit N ! `, Eq. (10) becomesø

exp

∑
2

Z t

0
dt �a

≠f�x; a�
≠a

∏¿
� 1 . (11)

It can be easily seen that Eq. (11) reduces to the
equilibrium Jarzynski equality (7) when we set f �
2b�F 2 U�.

Now we express the left-hand side of Eq. (11) in terms
of heat, so that we can find the correspondence with
Eq. (8). First, for Langevin systems, the total heat flowing
into the heat bath, Qtot, is defined by

Qtot �
Z t

0
dt �g �x�t� 2 j�t�� �x�t� . (12)

Note that the products of �x�t� and the other quantities are of
the Stratonovich type. This interpretation of the heat was
proposed and investigated by Sekimoto [10]. In addition,
we note that bQtot satisfies the fluctuation theorem if the
system remains in a steady state [8].

Next we rewrite Eq. (3) as

g �x � b�x� 2 b21 ≠f�x;a�
≠x

1 j�t� , (13)

where

b�x� � f 2
≠U�x; a�

≠x
1 b21 ≠f�x; a�

≠x
. (14)

Equation (13) corresponds to the decomposition of the
flux �x into an irreversible part b�x� and a reversible
part ≠f�≠x, in the sense of Refs. [11,12]. Multiplying
Eq. (13) by �x�t�dt and integrating with respect to t from
t � 0 to t � t, we get

bQtot �
Z t

0
dt bb�x� �x�t� 2 Df

1
Z t

0
dt

≠f�x; a�
≠a

�a�t� . (15)

Here we define the housekeeping heat as [13]

Qhk �
Z t

0
dt b�x� �x�t� . (16)

We discuss a physical meaning of this expression later;
e.g., see Eq. (27). Using Qex � Qtot 2 Qhk, we can
rewrite Eq. (11) as the generalized Jarzynski equality (8).
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Now we derive the second law for SST. From Eq. (8)
and the Jensen inequality, we obtain

b�Qex� 1 D�f� $ 0 . (17)

The quantity D�f� is the difference between the averages
of f�x; a� with respect to the initial and the final steady-
state measures. Now, note that with the information-
theoretic (Shannon) entropy given as

S �a� � 2
Z

dx rss�x; a� logrss�x; a� , (18)

the quantity �Df� is equal to DS . Equation (17) then
becomes

TDS $ 2�Qex� . (19)

Thus if we identify the Shannon entropy with the general-
ized entropy S, we obtain the second law for SST, Eq. (2).

We next consider a slow process in which the distribu-
tion function of the system can be regarded as rss�xi; ai�
at each time ti . We then haveøZ

da
≠f�x;a�

≠a

¿
�

ZZ
da dx rss�x; a�

≠f�x; a�
≠a

(20)

� 0 . (21)

Recalling thatZ
da

≠f�x; a�
≠a

� Df 1 Qex , (22)

we can prove that the equality holds in Eq. (19) for a slow
process.

Equation (17), together with the discussion following it,
constitutes the main result of this Letter. In the following
we discuss five important points that are peripherally re-
lated to this main result.

First, because we have been able to define a generalized
entropy, we can also define a generalized Helmholtz free
energy F valid for nonequilibrium steady states.

F�a� �
Z

dx rss�x; a�U�x; l� 2 TS�a� . (23)

From the second law for SST, Eq. (19), if we define the
excess work by

Wex � Qex 1 DU , (24)

the minimum work principle for SST immediately follows:

�Wex� 2 DF $ 0 . (25)

The equality here holds for slow processes, as in the case
of Eq. (19).

The next point we wish to discuss regards the function
b�x�. The physical meaning of this function as defined by
Eq. (14) is somewhat unclear. Because this quantity also
appears in the definition of the housekeeping heat, it would
be helpful if we could obtain a more intuitive expression
for it. We now derive such an expression. We consider the
local probability current, jss, for a given steady state.

gjss � 2b21 ≠rss�x; a�
≠x

1

∑
f 2

≠U�x; a�
≠x

∏
rss�x; a� .

(26)

This value is independent of x for the one-dimensional
case. Using Eqs. (4) and (14), Eq. (26) becomes

b�x� �
gjss

rss�x; a�
, (27)

which is propotional to the local average velocity.
As the third point of interest, we now discuss the re-

lation between the generalized Jarzynski equality and the
fluctuation theorem [8,14–17]. Our argument is the gen-
eralization of the Crooks argument [18], which focuses on
transitions between equilibrium states.

We first review the fluctuation theorem, following
Ref. [16]. Let s��x�� be defined according to

exp�2ts��x��� �

"
N21Y
i�0

P�x̃i11 j x̃i ; ãi�
P�xi11 j xi ; ai�

#
rss�x̃0; ã0�
rss�x0; a0�

,

(28)

where x̃i � xN2i and ãi � aN2i . Note that we can ex-
press ts as

ts � bQtot 2 Df (29)

by using an explicit form of P�xi11 j xi ; ai� [19]. By a
straightforward calculation, we find that the probability
distribution of s��x��, which is denoted by Ps�z�, satisfies

Ps�z� � exp�tz�P̃s�2z� , (30)

where the function P̃s is the probability distribution of
s��x�� for the system with the parameter set ã obtained
from a under time reversal. Equation (30) leads to

�exp�2ts�� � 1 . (31)

We remark that for the case of time-independent a,
Eq. (30) reduces to the relation referred to as the fluctua-
tion theorem.

As Crooks demonstrated [18], Eq. (31) yields the
Jarzynski equality (7) if we are concerned with transitions
between equilibrium states. However, for transitions
between nonequilibrium steady states, Eqs. (29) and
(31) with the Jensen inequality do not provide our result
Eq. (8), but rather TDS $ 2�Qtot�. Although this in-
equality does hold, the equality cannot be realized since
2�Qtot� is negative infinite for slow processes. Thus we
cannot define the generalized entropy through Eq. (31).

In order to clarify the difference between Eqs. (8) and
(31), we rewrite Eq. (9) as*

rss�xN ; aN �
rss�x1; a0�

"
N21Y
i�1

Py�xi j xi11; ai�
P�xi11 j xi; ai�

#+
� 1 , (32)

where Py�xi j xi11; ai� is the dual transition probability
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[20] defined by

Py�xi j xi11; ai�rss�xi11; ai� � P�xi11 j xi ; ai�
3 rss�xi; ai� . (33)

When the detailed balance condition is satisfied, Eq. (32)
together with Eq. (28) leads to Eq. (31), due to the equal-
ity Py � P. However, the detailed balance condition is
violated in nonequilibrium steady states, and thus the gen-
eralized Jarzynski equality is not directly related to the
fluctuation theorem.

The above discussion leads us to the fourth important
point we wish to discuss here, regarding the extent to which
detailed balance is violated. For this purpose, we define the
quantity B as

exp�2B�xi11, xi; ai�� �
P�xi j xi11; ai�rss�xi11; ai�
P�xi11 j xi ; ai�rss�xi ; ai�

.

(34)

Then using Eqs. (8), (32), and (33), we obtain an alterna-
tive expression of the housekeeping heat Qhk:

bQhk 	
N21X
i�1

B�xi11, xi ; ai� . (35)

The fifth point we wish to discuss here is the relation
between our present results and those previously presented
by one of the authors [7]. Note that if we can decompose
f as

f � 2b�F� 2 x�x; f� 2 U�x; l�� , (36)

the following equality holds:ø
exp

∑
2b

Z
dl

≠U�x; l�
≠l

∏¿
� exp�2bDF�� . (37)

We point out that F� here is different from the free energy
F defined by Eq. (23). It is seen that Eq. (37) is a special
case of Eq. (11), since here the only control parameter is
l, and the assumption implicit in the decomposition of
Eq. (36) is necessary for its derivation.

In conclusion, by defining the excess heat, we have de-
rived the second law for SST, Eq. (19), in the case of a
3466
simple stochastic model. The corresponding thermody-
namic function, the generalized entropy, is found to be the
Shannon entropy. Also, it is found that for a slow process,
the change in this entropy is identical to the excess heat
divided by the temperature.
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