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Spiking Behavior in a Noise-Driven System Combining Oscillatory and Excitatory Properties
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We show that firing activity (spiking) can be regularized by noise in a FitzHugh-Nagumo (FHN) neuron
model when operating slightly beyond the supercritical Hopf bifurcation (in the “canard” region). We
also provide the conditions for imperfect phase locking between interspike intervals and low amplitude
quasiharmonic oscillations. For the imperfect phase locking no need exists of an external signal as it
follows from the FHN intrinsic dynamics.
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Recent experimental data on single neurons and neu-
ron networks [1–5] have alerted us to the significant role
played by noise in the evolution of excitable systems, in
general. It has been shown in particular that neurons may
use noise to their advantage by enhancing their sensitiv-
ity near a preferred phase to detect external stimuli. On
the other hand, although action potentials and interspiking
time intervals are used by neurons for transmitting coded
information [6], yet spiking series come with a nonnegli-
gible amount of noise.

From the theoretical side, particular attention has been
given to models like FitzHugh-Nagumo equations and
other simplified albeit significant approximations to reality
[6–17]. It has been shown that the output of a nonlinear
system can be optimized or tuned to a given purpose
by a suitable noise signal. Furthermore, it is known in
various fields of science and engineering the significant
role played by stochastic resonance [18–20], aperiodic
stochastic resonance [10], and coherent resonance [14].
For instance, a significant improvement in human sensory
perception mediated by stochastic resonance has been
observed [4]. Another example is experiments on single
neurons in the visual cortex of a cat [5] showing that
an interspike interval histogram (ISIH) data can form
a decaying sequence of peaks located at equidistant
distributed positions. Experiments with inferior olive
neurons demonstrate a similar dynamical behavior, within
statistical significance, in their capability of providing
rhythmic activity in the cerebellum [1–3,21].

Recently, Pikovsky and Kurths [14] using the FitzHugh-
Nagumo (FHN) model [7] have shown that stochastic
resonancelike behavior can be observed even without an
external signal. The coherence of oscillations produced
by a system is maximum at moderate noise value. Similar
results were obtained for the Hodgkin-Huxley equations
[15]. Baltanas and Casado [16] using the FHN model
driven by quasimonochromatic noise (QMN) have shown
an imperfect phase locking between the interspike inter-
vals and the fundamental period of QMN. The resulting
ISIH has maxima at integer multiples of the fundamental
period. Generally, the FHN model [7,8] is considered in
two regimes:
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(i) a relaxation type limit cycle is the only attractor with
strongly nonlinear oscillations in the system or

(ii) a steady state is the only attractor and relatively
small perturbations can give rise to a large excursion (the
excitation loop) or a spike, as called in neurodynamics, and
then the system returns back to the steady state.

Here we shall consider the case intermediate between
(i) and (ii), when the creation of the limit cycle in the
FHN model occurs associated to the canard phenome-
non [22,23]. In the parameter region “between” cases (i)
and (ii), slightly beyond the supercritical Hopf bifurca-
tion the FHN model can generate low amplitude quasi-
harmonic oscillations albeit remaining excitable (Fig. 1).
Indeed, sufficiently strong perturbations may activate pulse
response (spike) and then the system returns to the low am-
plitude quasiharmonic oscillations which are thus called
“subthreshold” oscillations. In this note we study the re-
sponses to white Gaussian noise of the FHN model in this
initially “silent” parameter region.

Let us consider the system of differential equations

´
du
dt

� u�u 2 a� �1 2 u� 2 y , (1a)
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� g�u 2 b� 1

p
2D j�t� , (1b)

where ´ ø 1 is a smallness parameter, and u and y re-
fer to voltage and recovery variables, respectively. The

FIG. 1. Sketch illustrating coexistence of oscillatory (stable
limit cycle) and excitatory (long path curve) properties in the
FHN model slightly beyond the supercritical Hopf bifurcation.
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term j�t� represents a Gaussian delta-correlated noise with
zero mean. The rhs of Eq. (1b) consists of a monotoni-
cally increasing function, g�x�, satisfying the conditions:
g�0� � 0, g0�x� . 0, and g0�0� � 1. For g�x� � x the
system (1a),(1b) is the original FHN model [7]. We have
modified the standard equations to get flexibility to tune in-
dependently the time scales of the oscillation displayed by
Eqs. (1a) and (1b) as it will be further emphasized. Here,
for numerical analysis we shall use

g�x� � k1x2 1 k2

µ
1 2 exp

∑
2

x
k2

∏∂
, (2)

where k1 and k2 are new parameters chosen such that the
condition g0�x� . 0 is satisfied for any x.

As already mentioned we shall consider the system
(1a),(1b) near the supercritical Hopf bifurcation b / b�,
with
3432
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The deterministic system generates quasiharmonic oscil-
lations (Fig. 2a) whose corresponding limit cycle remains
in the thin layer of “slow” motions and hence does not
break the excitable property of the FHN model. Thus for
such parameter values the FHN model has both oscilla-
tory and excitatory properties. Because of the constraint
[g�0� � 0, g0�0� � 1] the period of subthreshold oscilla-
tions near the bifurcation point (3) is Tsth � 2p

p
´, and

depends on ´ only. The function g�x� helps to tune in
the system (1a),(1b) the time scales of the spikes inde-
pendently of the period of subthreshold oscillations. By
playing with k1 and k2 we can change the value of dy�dt
in the domains of slow motion and, consequently, the time
intervals spent by a trajectory in these domains, whose ap-
proximate values are
FIG. 2. Time series of the voltagelike variable, u, and corresponding power spectra and phase portraits for different values of noise
intensity: (a) D � 0, (b) D � 0.6 3 1026, (c) D � 0.6 3 1025. Dashed curve corresponds to the “slow” motions y � f�u�.
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4�1 2 a 1 a2�3�2
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.
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Clearly, k1 and k2 affect both the duration of the excita-
tion interval and the refractory period following a spike.
Moreover, k1 and k2 mostly govern Texc and Tref, respec-
tively. Thus using appropriate values of k1 and k2 we can
alter the duration of the spikes. The price we pay to have
such flexibility is a rather strong deviation of the trajecto-
ries from the slow motion curve, y � f�u�, for high values
of u (Fig. 2).

For illustration, we fix parameter values ´ � 0.005 and
a � 0.9. With this choice the period of subthreshold os-
cillations is Tsth � 0.44 and the critical value of b� is
approximately 0.315. We chose b � 0.316, i.e., slightly
beyond the bifurcation. Thus the low amplitude limit cy-
cle (subthreshold oscillations) is reached from any point of
the phase space of the noise-free system. Using k1 � 7.0
and k2 � 0.08 we get that the two time scales in a spike are
approximately equal, Texc � Tref � 0.04. Thus the dura-
tion of a spike, �Texc 1 Tref�, was chosen much shorter
than the above indicated period of subthreshold oscilla-
tions, Tsth. Such relation is typical to an inferior olive
neuron.

We have integrated the system (1a),(1b) using Euler’s
method [24]. The response of the FHN model to various
intensity levels of the white Gaussian noise is shown in
Fig. 2. In the deterministic case (Fig. 2a) the system
generates oscillations with period Tf � 0.45 which is
very close to the linear approximation Tsth � 0.44. For
low enough noise intensity (Fig. 2b) the output of the
FHN model is oscillatory with the power spectrum peaked
around Tf . The quantity u performs fast oscillations
with relatively slow varying amplitude. Spikes are very
rare. For a moderate noise intensity level (Fig. 2c) the
spectrum widens and has relatively high peaks in the short
time interval. This is due to increasing spike rate and,
consequently, to a higher contribution of the fast motions.
For strong enough noise intensity the output is highly
irregular.

First let us check the influence of subthreshold oscilla-
tions in the phenomenon of coherence resonance reported
in [14]. Averaging results of 30 runs we compute the nor-
malized autocorrelation function, C�t�, of y�t�. Then we
calculate the characteristic correlation time

tc �
Z `

0
C2�t� dt . (5)

Figure 3 shows this quantity as a function of noise in-
tensity level. The characteristic correlation time has a
rather well-pronounced maximum at moderate noise inten-
sity level (D � 1.54 ? 1025). This indicates the existence
of coherence resonance in the system in agreement with
the results reported in [14]. However, at very low noise
FIG. 3. Characteristic correlation time vs noise intensity com-
puted by using (5).

intensity the value of tc sharply increases. The ratio-
nale behind this new result goes as follows. For low
enough noise intensity level, D, spikes appear very rarely
(Fig. 2b) and, practically, do not contribute to the corre-
lation function. Hence we can omit them and consider
the influence of the noise on the limit cycle oscillator
(limited to subthreshold oscillations only). Decreasing D
to zero, the correlation function can be approximated by
C�t� ~ exp�2D� cosvt instead of going to zero as in
the parameter region (ii), and hence for D ! 0, tc ! `

(Fig. 3).
The stochastic signals shown in Figs. 2b and 2c are simi-

lar to the traces reported in [16] when studying the influ-
ence of a quasimonochromatic noise on the FHN model
in the parameter region (ii). The important feature is that
the voltagelike variable fires when the system passes the
maxima of subthreshold oscillations and, consequently, has
a maximum of probability to escape them. Thus the system
has a preferred phase value to fire. To check this ability
we calculated ISIH averaging over 200 realizations with
approximately 15000 spikes per run. We count a spike
event if the voltagelike variable, u�t�, crosses from below
the threshold value u0 � 0.7. Figure 4 shows ISIH for
three values of noise intensity level, D. All histograms
have clear equidistant peaks. This supports our hypothesis
about the existence of a preferable phase for subthreshold
oscillations. Increasing the noise intensity level the first
peak corresponding to firing at each oscillation period in-
creases while the others decrease and become blurred.

Thus in the parameter region considered above besides
the coherence resonance discovered in [14], the FHN
model exhibits imperfect phase locking between the inter-
spike intervals and the fundamental period of subthreshold
oscillations. A similar phenomenon was reported in [16]
3433
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FIG. 4. Interspike interval histograms corresponding to three different noise intensity levels: (a) D � 2 3 1026, (b) D � 6 3
1026, (c) D � 2 3 1025.
but here in our case no additional second order stochas-
tic differential equation for generating a QMN is needed.
Instead we have shown that the system can achieve dif-
ferent behaviors due to its intrinsic dynamics by suitably
varying the values of its parameters (e, k1, and k2). The
ISIHs shown on Fig. 3 strongly depend on the relation
between frequency of subthreshold oscillations and spike
width (regulated by e, k1, and k2). For parameter values
different from those considered above the firing pattern is
drastically different, thus illustrating the richness of the dy-
namics of the noise-driven FHN model.

Let us conclude by saying that experimental traces
recorded from a slice of inferior olive (see in particular
Figs. 6A and 8A in [2] and Fig. 5 in [1]) show behavior
reminiscent of the above described for the noise-driven
FHN model. In particular, to have subthreshold oscilla-
tions suffices to require that the value of b be close enough
to the bifurcation value (3). Note that for b , b� the
system has a stable focus, hence it is capable of producing
damped oscillations that may eventually become sustained
by a suitable noise. For models of neuron networks it
has been shown that oscillations can appear due to loose
coupling between neurons [25,26]. This supports the
hypothesis that neurons may be, generally, operating at the
edge of instability, close to bifurcation points, and small
perturbations, for example due to a noisy environment,
can give rise to firing activity that in turn, and this is
the crucial point, can be regularized by their intrinsic
dynamics.
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