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Reverse Brazil Nut Problem: Competition between Percolation and Condensation
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In the Brazil nut problem (BNP), hard spheres with larger diameters rise to the top. There are various
explanations (percolation, reorganization, convection), but a broad understanding or control of this effect
is by no means achieved. A theory is presented for the crossover from BNP to the reverse Brazil nut
problem based on a competition between the percolation effect and the condensation of hard spheres.
The crossover condition is determined, and theoretical predictions are compared to molecular dynamics
simulations in two and three dimensions.
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Rosato et al. [1] demonstrated via molecular dynam-
ics (MD) simulations that hard spheres with large diame-
ters segregate to the top when subjected to vibrations or
shaking. In the literature, this phenomenon is called the
Brazil nut problem (BNP) [2]. Besides a broad experi-
ence in the applied and engineering sciences [2,3], there
exist more recent approaches to understanding this effect
through model experiments [4–7]. The BNP has been at-
tributed to the following phenomena: the percolation ef-
fect, where the smaller ones pass through the holes created
by the larger ones [2], geometrical reorganization, through
which small particles readily fill small openings below the
large particles [3,5], and global convection which brings
the large particles up but does not allow for reentry in the
downstream [4]. Since most experiments were carried out
with a single large grain in a sea of smaller ones [4–6],
it is not quite clear which of these observed mechanisms
apply for the segregation of binary mixtures. For example,
while the convection is responsible for the rise of the single
large grain, MD simulations [8] and hydrodynamic models
[9] clearly indicate that convection cells are absent in the
bulk, but confined near the wall when the width of the con-
tainer is much larger than the height. Recently, Shinbrot
and Muzzio [10] observed a reverse buoyancy in shaken
granular beds, where again a single large grain in a sea of
smaller grains could segregate to the bottom if the bed was
deep and the amplitude of vibration was large. While all
these scenarios are interesting, we recognize that the basic
control parameters for each regime have not been clearly
identified. Numerical simulations of binary mixtures with
external temperature gradients and varying ratios of gravi-
tational acceleration and agitation intensity [11] show that
segregation can be tuned, avoided, and even inversed under
special, but nonpractical boundary conditions. However,
these simulations did not examine a variation in mass ratio
or size ratio and were not compared to the kinetic theory
of binary mixtures [12].

The purpose of this Letter is to propose a new con-
densation driven segregation of binary hard spheres un-
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der gravity, which is conceptually different from the pre-
viously known convection driven [4], percolation driven
[2,3], reorganization controlled [5], entropy driven (in the
absence of gravity) [7], or inertia driven [10] segregation
processes. We will identify the control parameter(s) and
determine the crossover condition from the normal BNP
to the reverse Brazil nut problem (RBNP). We expect our
results to be relevant to the colloidal system as well, if the
inertia term is ignored.

The starting point is the observation made in an
earlier paper [13] and recently confirmed by MD simu-
lations [14] that there exists a critical temperature, Tc,
below which a monodisperse system of hard spheres
undergoes a condensation transition in the presence of
gravity. The density profile was obtained using the global
equation of state of the system [15]. Consider, for ex-
ample, a system of elastic hard spheres with mass m and
diameter d in a container. Let the initial layer thickness
(filling height at rest when T � 0) be m measured in units
of d. If the system is in contact with a thermal reservoir
at temperature T , one can estimate the dimensionless
thickness of the fluidized layer, Dh, in D dimension by
equating the kinetic energy of one grain to the potential
energy equivalent, m�y2��2 � DT�2 � mgdDh, which
yields Dh � DT��2mgd�. One may estimate the point,
Tc, at which the system is fully fluidized, by setting
Dh � m. We obtain

Tc � mgdm�m0 , (1)

where m0 is a constant that depends on the spatial dimen-
sion and the underlying packing structure [16]. m0 was
determined in Ref. [13] with the use of the Enskog pres-
sure, while the numerically determined values for m0 were
provided in Ref. [14].

When T . Tc, the system is fully fluidized and the di-
mensionless thickness of the solid, defined as hsolid�T � �
m 2 Dh�T �, vanishes. On the other hand, for T , Tc,
one finds hsolid fi 0 because a fraction of particles
condenses at the bottom. Here, the solid phase refers to
© 2001 The American Physical Society 3423
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a hard sphere state where each particle fluctuates around
a fixed point, but is confined in a cage so that it cannot
exchange its center of mass position with neighboring
particles [14].

Consider now a binary mixture of hard spheres with
species A and B having mass mA and mB and diameters
dA and dB, respectively, and the initial layer thicknesses
are mA and mB. From Eq. (1), we find the ratio of the
critical temperatures to be

Tc�A�
Tc�B�

�
mAdA

mBdB
, (2)

where we have assumed that mA � mB. Suppose the sys-
tem is quenched at a temperature T between the two critical
temperatures Tc�A� and Tc�B�, i.e., Tc�B� , T , Tc�A�.
Then, the hard spheres of type B are above the conden-
sation temperature, while the hard spheres of type A are
below it. Thus at temperature T , particles of type A will
try to condense, while particles of type B remain fluidized.
Hence, type A particles will tend to segregate to the bot-
tom first. The underlying assumption of this scenario is
that particles of type A interact only with themselves while
seeing particles of type B as phantom particles, and vice
versa. Even though this assumption is a crude one, we nev-
ertheless find that the prediction based on this assumption
appears to work well for the segregation of binary mixtures
under the influence of gravity [17].

Since the critical temperature depends on m and d, an
inversion of the segregation should be achieved by sim-
ply altering the values of m and d. We first present event
driven molecular dynamics data for the normal BNP, where
particles with a larger diameter rise to the surface. Subse-
quently, we demonstrate how to reverse this phenomenon
by quenching the system between the two condensation
temperatures given by Eq. (1) and used in Eq. (2).

The total number of particles used in our simulations
varied from 400 to 2000 in 2D, and 2000 to 3600 in 3D,
with the width of the container varying from 15 to 50 par-
ticle diameters in 2D, and staying fixed at 15 3 15 in 3D.
We refer the readers to Ref. [18] for details of the algo-
rithm, which takes into account the rotation, regarding of
the collisional dynamics of hard spheres and a method for
handling the inelastic collapse. The thermal reservoir of
our system was modeled using white noise driving, first in-
troduced by Williams and MacKintosh [19]. The strength
of the noise was adjusted such that the average kinetic
energy of all particle defines the kinetic temperature of
the system.

To test the theory properly, the system was started from
a completely mixed state with no bias. To accomplish this,
the binary mixture was first heated to a very high tempera-
ture with no gravity in a closed container. This allowed the
system to reach a proper steady state where the centers of
mass of both species A and B were the same, and the den-
sity profiles of both species were uniform throughout the
container. Under these conditions, we achieved a perfectly
mixed binary system. We then turned on gravity, removed
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the lid of the container, and quenched the system to a tem-
perature, T , between the two critical temperatures Tc�A�
and Tc�B�, such that Tc�B� , Tc�A�. The system was then
allowed to relax to steady state under these new conditions.
Then we measured the density profile and monitored the
center of mass. The coefficient of restitution was 0.9999
for the particles and 0.98 for the walls, values where the
system did not suffer from inelastic collapse [20]. We first
present MD data for the usual Brazil nut problem [1]. Such
a case is shown in Fig. 1 for dA�dB � 8, and mA�mB � 4
in 2D and dA�dB � 2, and mA�mB � 2 in 3D. The tran-
sition temperature ratio is Tc�A��Tc�B� � mAdA�mBdB �
8 in 2D and 4 in 3D, and the quenching temperature T is
such that Tc�B� , T , Tc�A�. In these cases, we expect
the larger particles to condense first, while the smaller par-
ticles remain fluidized. Indeed, the center of mass position
of particles of type A quickly decays as predicted by the
condensation picture, but as time passes, the smaller par-
ticles of type B eventually pass through the holes and settle
to the bottom because of the percolation effect. Percola-
tion overrides the condensation mechanism, resulting in
the usual BNP in two and three dimensions. Snapshots of
the equilibrium state, which is the typical Brazil nut segre-
gation [1,5,7], are shown in Fig. 1. At this point, one has
two choices leading to the RBNP, the schematic picture
of which is shown in Fig. 2. The first option is to fix the
mass ratio and change the diameter ratio (path 1). There
exists a critical diameter ratio below which the RBNP sets
in. This was also observed in Ref. [6]. The second case
is to fix the diameter ratio and change the mass ratio (path
2). Again, there exists a critical mass ratio beyond which
the RBNP sets in. Both cases exhibit a crossover from the
percolation to the condensation driven segregation. We

(a) (b)

FIG. 1. Brazil nut problem in 2D (a) and 3D (b). Particles
with the larger diameter rise to the top. Note that Tc�B� , T ,
Tc�A� and percolation overrides the condensation effect.
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FIG. 2. The schematic picture for the crossover from the Brazil
nut problem (BNP) to the reverse Brazil nut problem (RBNP).
The line is the dividing line between the BNP and the RBNP
for 2D.

now present representative MD data to demonstrate this
crossover from BNP to RBNP. We changed both the mass
and the diameter, keeping mA � mB, to reverse the Brazil
nut segregation via condensation. In Fig. 3a, simulation
results are shown for the same mass ratio as Fig. 1a, i.e.,
mA�mB � 4, but a diameter ratio of dA�dB � 2. This rep-
resents movement along path 1 in the parameter space of
Fig. 2. We quenched the system between the two critical
temperatures such that Tc�B� , T , Tc�A�. In this case,
the larger particles condensed first and settled to the bot-

(a) (b)

FIG. 3. (a) RBNP along path 1 in 2D. Particles with the
larger diameter sink to the bottom. The mass ratio is the same
as in Fig. 1a, but the diameter ratio decreased to dA�dB � 2.
(b) RNBP along path 2 in 3D. The diameter ratio is the same as
in Fig. 1b, but the mass ratio is increased to mA�mB � 6.
tom. They overcame the percolation effect and remained
there, even though the diameter was larger. In Fig. 3a,
the simulation results clearly show the RBNP, namely, the
larger ones settling to the bottom.

One may also observe the RBNP by moving down along
path 2 as shown in Fig. 2. The corresponding simulation
result for the RBNP is shown in Fig. 3b, where the diame-
ter ratio is dA�dB � 2, but the mass ratio is mA�mB � 6.

The simulation results clearly suggest that during the
segregation process, both the percolation effect and the
condensation mechanism compete. Hence, the condition
for the crossover from the BNP to the RBNP may be de-
termined by setting the control parameters for both cases
to be of the same order of magnitude.

The control parameter for the percolation effect has been
determined by Rosato et al. [1], who argued that it is
basically controlled by the ratio of volumes (diameters)
of the two types of particles. Since we have established
that the dimensionless control parameter for condensation
is the ratio of the two critical temperatures, we determine
the crossover condition as follows:µ

dA

dB

∂D

�
Tc�A�
Tc�B�

�
mAdA

mBdB
,

or equivalently, µ
dA

dB

∂D21

�
mA

mB
, (3)

where D is the spatial dimension. The simulation results
are displayed in Fig. 4a for two dimensions and Fig. 4b
for three dimensions. We note that numerical simula-
tion seems to indicate that the proportionality constant in
Eq. (3) is close to unity. We cannot provide an exact value
since the transition is rather smooth and thus somewhat dif-
ficult to identify near the boundary of the phase diagram
in the finite systems examined here. We also point out that
these phase diagrams are robust as long as the quenching
temperature T is between Tc�A� and Tc�B�.

The vertical axis is y � dA�dB and the horizontal axis
is x � mA�mB. Boundaries for the crossover from the
BNP to RBNP are given by the curve, y � x1��D21�, where
y � x in 2D and y �

p
x in 3D. At the boundary line

(stars), the system does not really segregate, but remains in
a mixed state. In passing, we point out that we have also in-
vestigated the effect of the layer thickness on segregation.
If we make mA . mB, such that Tc�B� , T , Tc�A�, then
we can destroy the BNP such that a mixed state occurs.

In summary, we have proposed a qualitative model for
the segregation of binary mixtures and demonstrated that
the type of segregation (BNP or RBNP) can be predicted.
The range of applications is beyond that of the classi-
cal percolation, reorganization, arching, and convection
models since those are limited to special situations. For
example, the arching model requires very small tempera-
tures or rather high densities in the condensed regime,
whereas the convection model can be applied only if con-
vection cells are present. However, we do not exclude
3425



VOLUME 86, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 9 APRIL 2001
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
mA/mB

1.0 

2.0 

3.0 

4.0 

d A
/d

B

(a)

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
mA/mB

1.0 

2.0 

3.0 

4.0 

d A
/d

B

(b)

FIG. 4. Phase diagram determined for the segregation of bi-
nary mixtures in (a) two dimensions, and (b) three dimensions.
In 2D, the straight line is y � x, while in 3D, the curve is
y �

p
x. The circles are data points for BNP, the squares for

RBNP, and the stars are data points for the mixed state.

those approaches. Rather, we expect that our condensation
driven segregation gives a more general framework, while
special cases can be described better using the adapted
models mentioned above. We have related the segrega-
tion to the respective condensation of two species, which
takes place at different temperatures, and have studied
various mass and size ratios confirming the theoretical pre-
dictions via MD simulations in both two and three dimen-
sions. The future research needs to focus on the effect of
the filling heights on the condensation driven segregation
and examining our strong assumption that the particles of
either species feel the other species only as phantom back-
ground. Also, it would be important to extend our analysis
to cases where the particles are driven either by vibrations
or shaking, using the relation between T and the strength
of vibration [21] or shaking [1]. We also propose to per-
form experiments to parallel and validate our predictions.
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