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Spinon Attraction in Spin-1���2 Antiferromagnetic Chains
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We derive the representation of the two-spinon wave function for the Haldane-Shastry model in terms
of the spinon coordinates. This result allows us to rigorously analyze spinon interaction and its physical
effects. We show that spinons attract one another. The attraction gets stronger as the size of the system
is increased and, in the thermodynamic limit, determines the power law with which the susceptibility
diverges.
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Several properties of interacting spin-1�2 antiferro-
magnetic spin chains can be figured out by means of the
Bethe-ansatz (BA) technique, developed by Bethe in his
pioneristic paper [1]. From the dispersion relation of low-
lying excitations [2], it has been figured out that low-
energy excitations in spin-1�2 antiferromagnets have
spin-1�2 [3]. Later on they were called spinons [4,5].
The Brillouin zone for one spinon is halved [3,4,6], and
spinons are semions, i.e., particles with statistics half that
of regular fermions [5,7].

Low-energy excitations of BA-solvable models are in
the same universality class as excitations of the Haldane-
Shastry model (HSM) [8]. The HSM is a system of spins
on a circular lattice interacting via an antiferromagnetic
interaction inversely proportional to the square of the chord
between the corresponding sites. The Hamiltonian is given
by

HHS � J

µ
2p

N

∂2 NX
a,b

�Sa ? �Sb

jza 2 zbj2
, (1)

where za � exp�2pia�N� and a is the lattice site. The
HSM is one of the simplest exactly solvable interacting
antiferromagnets in 1D. It is the prototype of a 1D spinon
gas [5] since it does not take marginal logarithmic correc-
tions, in contrast, for instance, with the behavior of the
Heisenberg model [4,6]. Hence, in this Letter we focus on
the dynamics of spinon excitations in the HSM.

L-spinon solutions of the HSM have been constructed
[5] in analogy to the corresponding spinless continuum
version of the model [9]. When expressed in terms of
Bethe-ansatz such as “pseudomenta,” the energy of a
many-spinon solution in the corresponding “plane wave”
representation in the thermodynamic limit appears to be
given by the energy of a set of noninteracting particles,
often referred to as “free spinon gas” [10,11]. How-
ever, from the representation of the many-spinon wave
function, the persistence of a spinon interaction in the
thermodynamic limit is not at all transparent. Indeed, the
interaction between spinons is encoded in the definition
of the pseudomomenta, which enter the formula for the
energy of a many-spinon solution [5,7].
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In this paper we analyze carefully the nature of spinon
interaction and its persistence in the thermodynamic limit,
by working out the real-space coordinate representation
for two-spinon eigenstates of H HS and the correspond-
ing Schrödinger equation. The spinon interaction and its
nature follow straightforwardly from the behavior of the
exact solution of this equation. In Fig. 1 we plot the re-
sult. While at large separations the probability amplitude
is independent of spinon separation, as it is appropriate for
noninteracting particles, at short separations there is a huge
enhancement. Such an enhancement is a clear evidence for
a short range, attractive interaction between spinons. As
we show in Fig. 1, this enhancement gets sharpened as the
number of sites increases, at odds with the conclusion that
spinon interaction and its effects disappear in the thermo-
dynamic limit, which could be derived from the additivity
of the energy.

Spinon dynamics determines the low-energy physics of
the HSM. 1D interacting antiferromagnets do not order
and, accordingly, the spin-1 spin wave (SW) is an unsta-
ble excitation of the HSM. The SW is unstable at any
energy and momentum against decay into a spinon pair
[3]. This causes nonanalyticities in the SW propagator, the

FIG. 1. Square of the two-spinon wave function jpmn�z�j2 de-
fined by Eq. (22) for the case of N � 300, m � N�2 2 1, and
n � 0. At large separations the probability oscillates between 0
and 2 and averages to 1. The inset shows this function close to
the origin for N � 200, 400, and 600. The value at the origin
diverges in the thermodynamic limit.
© 2001 The American Physical Society
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dynamical spin susceptibility (DSS) xq�v�. xq�v� devel-
ops a branch cut at the threshold energy for a SW and a
broad continuum above this threshold. Broad spectra have
been observed by means of neutron scattering on quasi 1D
samples [12], which experimentally substantiates this sce-
nario. However, the continuum is not flat, as would be the
case if it were a spinon joint density of states, but rather
has a divergent square-root edge. We show that it is the
spinon interaction which makes the matrix element for the
decay of the spin wave into spinon pairs huge at threshold
and causes this divergence. We explicitly prove that, in the
thermodynamic limit, the spinon attraction turns into the
square-root divergence in the DSS. Spinon interaction and
its relation to the DSS are the main result of our work.

Let us begin with some basic results from the HSM. In
the even-N case the ground state of HHS [Eq. (1)] is a
disordered spin singlet, whose wave function is given by

CGS�z1, . . . , zM� �
MY

i,j

�zi 2 zj�2
MY
j

zj , (2)

where M � N�2 and the � j�’s denote the positions of "
spins, all the others being #. The corresponding energy
is given by EGS � 2J�p2�24� �N 1 5�N� [4,6,13]. Ele-
mentary excitations above CGS are spinons–spin-1�2 de-
fects in the otherwise featureless disordered sea. A # spinon
localized at a can be thought of as a singlet sea where the
spin at a is constrained to be #. The corresponding wave
function is

Ca�z1, . . . , zM� �
MY
j

�za 2 zj�
MY

i,j

�zi 2 zj�2
MY
j

zj ,

(3)

where now N is odd and M � �N 2 1��2. A one-spinon
eigenstate of HHS is constructed by making the plane-
wave superposition

Cm�z1, . . . , zM� �
1
N

NX
a�1

�z�
a�mCa�z1, . . . , zM� . (4)

The corresponding energy is

Em � 2J
p2

24

µ
N 2

1
N

∂
1

J
2

µ
2p

N

∂2

m�M 2 m� .

(5)
Cm also has a well-defined crystal momentum: qm �
�p�2�N 2 �2p�N� �m 1 1�4� (mod2p). In terms of qm

the energy with respect to the ground state is E�qm� �
�J�2� ��p�2�2 2 q2

m� (modp) [4,6,13].
Spinons do not lose their identity when many of them

are present. L spinons can be thought of as a disordered
sea with the spin at L sites constrained to be # [4]. For two
spinons this means that the corresponding wave function
for a pair of localized spinons at a and b is given by
(M � N�2 2 1)

Cab�z1, . . . , zM� �
MY
j

�za 2 zj� �zb 2 zj�

3

MY
i,j

�zi 2 zj�2
MY
j

zj . (6)

Cab can be analytically extended to any value of za , zb

on the unit circle. As za , zb are lattice sites, they are
interpreted as locations of # spins [5].

States with two spinons carrying well-defined crystal
momentum are given by the lattice plane waves which have
the expression

Cmn�z1, . . . , zM� �
NX

a,b

�z�
a�m�z�

b �n

N2 Cab�z1, . . . , zM� .

(7)

The total crystal momentum of Cmn is q � �p�2� �N 2

2� 1 qm 1 qn (mod2p) and qm, qn are the momenta of
each spinon. The Cmn are an overcomplete set. A set
of linearly independent states is constructed by taking
only the Cmn with M $ m $ n $ 0. Two-spinon energy
eigenstates are linear superpositions of these:

Fmn �
�MX
l�0

amn
� Cm1�,n2� , (8)

where �M � n if m 1 n , M, �M � M 2 m otherwise.
The coefficients amn

� are [9,13]

amn
� � 2

�m 2 n 1 2��
2��� 1 m 2 n 1

1
2 �

�X
k�1

amn
k21 �a0 � 1� ,

(9)

and the corresponding eigenvalue is
Emn � 2J

µ
p2

24

∂ µ
N 1

5
N

∂
1

∑
E�qm� 1 E�qn� 2

pJ
N

jqm 2 qnj

2

∏
�qm # qn� . (10)

Emn is the sum of the ground-state contribution, EGS � 2J�p2�24� �N 1 5�N�, and E�qm, qn�, which is the two-spinon
energy above the ground state. E�qm, qn� is the sum of the energies of two isolated spinons plus a negative interaction
contribution that becomes negligibly small in the thermodynamic limit [4,6].

The norm of Fmn can be computed by means of a recursive procedure, based on the operator e1�z1, . . . , zM� � z1 1

· · · 1 zM . For any wave function of the form F 3 CGS, where F is a symmetric polynomial, we have

H FCGS � EGSFCGS 1
J
2

µ
2p

N

∂2

CGS

Ω
1
2

∑X
j

z2
j

≠2

≠z2
j

1 4
X
jfik

z2
j

zj 2 zk

≠

≠zj

∏
2 �M 2 1�

X
j

zj
≠

≠zj

æ
F , (11)

and thus
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H e1FCGS 2 e1H FCGS �
J
2

µ
2p

N

∂2

CGS

∑X
j

z2
j

≠

≠zj
1 �M 2 1�e1

∏
F . (12)
From the matrix elements of the commutator be-
tween HHS and e1 under the inner product � f j g	 �P

z1,...,zM
f��z1, . . . , zM�g�z1, . . . , zM� we find that

�Fm21,nje1jFmn	
�Fm21,n jFm21,n	

�
2�M 2 m 1 1�
2�M 2 m 1

1
2 �

, (13)
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�Fm21,nje1jFmn	
�Fmn jFmn	

�
2�m 1

1
2 � �m 2 n�2

2�m 2 n 1
1
2 �m�m 2 n 2

1
2 �

,

(14)

�Fm,n21je1jFmn	
�FmnjFmn	

�
2n

2�n 2
1
2 �

, (15)
�Fm,n21je1jFmn	
�Fm,n21 jFm,n21	

�
2�M 2 n 1

3
2 � �m 2 n 1 1�2

2�m 2 n 1
3
2 � �m 2 n 1

1
2 � �M 2 n 1 1�

. (16)
Combining these expressions, one then finds by induction
that

�Fmn jFmn	
�CGS jCGS	

�
G�m 2 n 1

1
2 �G�m 2 n 1

3
2 �

2pN�M 1 1�G2�m 2 n 1 1�

3
G�m 1 1�G�M 2 m 1

1
2 �

G�m 1
3
2 �G�M 2 m 1 1�

3
G�n 1

1
2 �G�M 2 n 1 1�

G�n 1 1�G�M 2 n 1
3
2 �

, (17)

where �CGS jCGS	 � NM11�2M 1 2�!�2M11 [14].
The definition of the wave function for two spinons in

real space is now straightforward. Cab is the state of
two localized spinons at za and zb . The states Fmn have
been classified in [10] as highest-weight states of a Yangian
algebra. They provide a basis for the fully polarized two-
spinon states, as Cab . Hence, we define the two-spinon
wave function zm

a zn
bpmn�za�zb� from

Cab �
MX

m�0

mX
n�0

�21�m1nzm
a zn

bpmn

µ
za

zb

∂
Fmn . (18)

It is, in principle, possible to invert Eq. (8) and to ob-
tain pmn algebraically. However, we developed a much
simpler approach, which makes use of the fact that Cab is
perfectly defined for any za , zb on the unit circle. Because
jFmn	 is an eigenstate of HHS, one obtains

�FmnjHHSjCab	 � Emn�Fmn jCab	 . (19)

On the other hand, by standard manipulations [5,9,13], one
can also show that
�FmnjHHSjCab	 � EGS�Fmn jCab	

1
J
2

µ
2p

N

∂2Ωµ
M 2 za

≠

≠za

∂
za

≠

≠za

1

µ
M 2 zb

≠

≠zb

∂
zb

≠

≠zb

2
1
2

za 1 zb

za 2 zb

µ
za

≠

≠za

2 zb

≠

≠zb

∂æ

3 �Fmn jCab	 . (20)

Note the last term in this equation, which is the spinon interaction, is large and diverges as the first power of the spinon
separation. Upon equating Eq. (19) to Eq. (20) we finally derive the differential equation

z�1 2 z�
d2pmn

dz2 1

∑
1
2

2 m 1 n 2

µ
2m 1 n 1

3
2

∂
z

∏
dpmn

dz
1

m 2 n
2

pmn � 0 . (21)
The solution to Eq. (21) is the hypergeometric polynomial
[15]

pmn�z� �
G�m 2 n 1 1�

G� 1
2 �G�m 2 n 1

1
2 �

3

m2nX
k�0

G�k 1
1
2 �G�m 2 n 2 k 1

1
2 �

G�k 1 1�G�m 2 n 2 k 1 1�
zk .

(22)

In Fig. 1 we plot jpmn�za�zb�j vs a 2 b. The sharp
maximum at small spinon separation is a direct conse-
quence of the strong attractive interaction between the
spinons seen in Eq. (20).
We now prove rigorously that this enhancement is re-
sponsible for the square-root singularity in the DDS. The
susceptibility is defined by

xq�v� �
X
X

j�XjS2
q jCGS	j2

�X jX	 �CGS jCGS	

3
2�EX 2 EGS�

�v 1 ih�2 2 �EX 2 EGS�2 , (23)

where jX	 denotes an exact eigenstate of H , EX denotes
its eigenvalue, and
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S2
q �

X
a

�z�
a�k�Sx

a 2 iSy
a� �q � 2pk�N� . (24)

However, since the act of flipping an " spin to # at site a

is the same as creating two # spinons on top of each other
at site a we have by virtue of Eq. (18)

S2
q CGS �

X
a

�z�
a�kCaa

� N
MX

m�0

mX
n�0

�21�m1npmn�1�d�m 1 n 2 k�Fmn .

(25)

Thus the set of two-spinon eigenstates exhausts the excited
states coupled to CGS by S2

q , and we have

xq�v� � N2
MX

m�0

mX
n�0

�Fmn jFmn	
�CGS jCGS	

p2
mn�1�

3 d�m 1 n 2 k�
2�Emn 2 EGS�

�v 1 ih�2 2 �Emn 2 EGS�2 .

(26)
This proves that the enhancement is entirely due to the
functional form of pmn�z� shown in Fig. 1.

The thermodynamic limit is defined as M ! `, with
m�M and n�M held constant. From general properties
of the hypergeometric functions [15] we obtain pmn�1� �
G�1�2�G�m 2 n 1 1��G�m 2 n 1 1�2�. Then approxi-
mating all the gamma functions using Stirling’s formula
and converting the sums on n and m to integrals over the
1-spinon Brillouin zone, we obtain the Haldane-Zirnbauer
formula for the DSS [8]

xq�v� �
J
2

Z p

2

2 p

2

dq1

Z q1

2 p

2

dq2
jq1 2 q2jd�q1 1 q2 2 q�p

E�q1�E�q2�

3
2E�q1, q2�

�v 1 ih�2 2 E2�q1, q2�
, (27)

where E�q� and E�q1, q2� are the one-spinon and the two-
spinon energies, respectively. This may be exactly inte-
grated over q1 and q2, and the result is
xq�v� �
J
4

Q�v2�q� 2 v�Q�v 2 v21�q��Q�v 2 v11�q��p
v 2 v21�q�

p
v 2 v11�q�

, (28)
where v21�q� � �J�2�q�p 2 q�, v11�q� � �J�2� �2p 2

q� �q 2 p�, and v2�q� � �J�2�q�2p 2 q�.
We see that, in the thermodynamic limit, the enhance-

ment in pmn turns into the square-root divergence in xq�v�
at threshold. The origin of the branch cut is the threshold
energy for the creation of a spinon pair with total momen-
tum q. The physical meaning of this branch cut is that
the spin wave is unstable versus decay into a spinon pair.
Hence, no sharp poles, corresponding to possible low-
energy spin-1 stable excitations, develop, but, on the
contrary, the spinon-pair threshold is the same as the
spin-wave threshold. This last observation points toward
the main conclusion of our work: spinon attraction is
of fundamental importance for understanding relevant
low-energy properties of spin-1�2 antiferromagnets. It
generates an enhancement of the probability for two
spinons to be at the same site. The enhancement greatly
increases the amplitude for a spin-1 excitation to break
into a spinon pair, on top of a uniform two-spinon joint
density of states. This effect is evident in the thermo-
dynamic limit of our formulas, where we show that the
enhancement turns into the branch cut in the DSS.
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