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Radio-Frequency Bloch-Transistor Electrometer
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A quantum electrometer is proposed which is based on charge modulation of the Josephson super-
current in the Bloch transistor inserted in a superconducting ring. As this ring is inductively coupled
to a high-Q resonance tank circuit, the variations of the charge on the transistor island are converted
into variations of amplitude and phase of oscillations in the tank. These variations are amplified and
then detected. At sufficiently low temperature of the tank the device sensitivity is determined by the
energy resolution of the amplifier, that can be reduced down to the standard quantum limit of 1

2 h̄. A
“back-action-evading” scheme of subquantum limit measurements is proposed.
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The single electron transistor (SET) whose operation is
based on correlated electron tunneling in small-capacitance
double junctions has significantly extended the possibili-
ties of modern experiments. This remarkable device with
subelectron sensitivity to the charge induced on its cen-
tral electrode (island) has made it possible to study the
electron transport and noise processes in various meso-
scopic structures (see, for example, the review by Likharev
[1]). In recent years, especially after the encouraging ex-
periment by Nakamura et al. [2], the possibility of using
SET electrometers for measuring the quantum state of the
charge qubit (Cooper-pair box) has been extensively dis-
cussed [3]. In such measurements both the sensitivity of
the detector (electrometer) to the input signals and its de-
structive back action on the quantum mechanical state of
the box are of utmost importance. The detector’s figure of
merit, which takes into account the back-action effect, is
the energy resolution e in the unit bandwidth. According to
the quantum mechanical uncertainty principle for a phase-
insensitive detector, the figure e $

1
2 h̄. Its ultimate value

of 1
2 h̄ (the so-called standard quantum limit —SQL) can

be approached by a perfect (quantum-limited) device [4].
The normal-state metallic SET operating in the regime

of sequential electron tunneling does not belong to the cate-
gory of perfect devices. In the usual case of high tunneling
resistance of the junctions Rt ¿ RQ (here RQ � h�4e2 �
6.5 kV is the resistance quantum), the value e ¿ 1

2 h̄ [5].
SQL can, in principle, be approached using SET with Rt *

RQ and operating it in the cotunneling regime at very low
voltage bias [6,7]. However, in this case the output signal
of the electrometer is vanishingly small so that the regime
can hardly be practical.

In contrast to the SET operating on “normal carriers,”
i.e., electrons, its superconducting counterpart with appre-
ciable strength of Josephson coupling EJ in the junctions,
i.e., the Bloch transistor [8], can operate in the regime of
a gate-controlled supercurrent at zero quasiparticle cur-
rent. In this regime the charge carriers are the Cooper
pairs with charge 2e, and their transfer across the junctions
takes place without power dissipation (and, hence, with-
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out shot noise) in the transistor. Read-out of the critical
current value can be performed by measuring the voltage
across the resistor with Rs ø RQ , shunting the transistor
[9]. Although this electrometer is a quantum-limited de-
vice, its implementation still suffers from a low (~Rs�RQ)
conversion factor [10].

In this paper we propose an electrometer with the Bloch
transistor inserted in a superconducting ring which is in-
ductively coupled to the rf-driven resonance tank circuit.
In contrast to the so-called rf-SET electrometer [11] based
on charge-dependent dissipation in a resonance circuit con-
taining a normal SET, the Bloch transistor controls the
ac supercurrent in the loop and, hence, the effective re-
actance of the tank circuit. As a result, both the amplitude
and phase of oscillations in the tank circuit depend on the
island charge. This mode of electrometer operation is simi-
lar to that of a single-junction superconducting quantum
interferometer device (SQUID) with low critical current
(nonhysteretic regime) [12]. The goal of this paper is to
compute the characteristics of the electrometer and demon-
strate its potential for qubit measurements.

The equivalent electric diagram of the electrometer is
presented in Fig. 1. The characteristic Josephson coupling
energies in the first and second junctions of the transis-
tor are assumed to be not very different, EJ1 � EJ2; both
of them will, therefore, be characterized by the parameter
EJ � F0Ic0�2p , where F0 � h�2e � 2.07 3 10215 Wb
is the flux quantum and Ic0 is the nominal critical current of
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FIG. 1. Electric diagram of the rf-Bloch electrometer compris-
ing the grounded superconducting ring including the Bloch tran-
sistor with capacitively coupled gate, the series-resonance tank
circuit driven by source Vrf, a linear amplifier, and an amplitude
(or phase) detector.
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individual junctions. The charge-sensitive element of the
device is the transistor island. We assume that the total ca-
pacitance of the island C � C1 1 C2 1 Cg is sufficiently
small (here C1,2 and Cg are the self-capacitances of the
junctions and the coupling capacitance to the gate, respec-
tively). The corresponding charging energy Ec � e2�2C,
the Josephson energy EJ , and the energy gap D of the
superconducting material the transistor is made of should
obey the condition

D . Ec � EJ ¿ kBT , (1)

where T is the temperature. This relation ensures blockade
of quasiparticle tunneling across the junctions owing to the
even-odd parity effect on the superconducting island [13].

The relation chosen, EJ�Ec � l � 1, first ensures sub-
stantial modulation of the supercurrent in the whole range
of variation of the polarization charge on the island, 2e #

q # e [9,14]. Second, the width of the forbidden band in
the energy spectrum (�EJ at l & 1 [15]) is large enough
to prevent thermal excitation of higher Bloch bands lead-
ing to a reduction of the resultant critical current and of
the depth of its modulation by the gate. For l � 1 the
critical current of the transistor Ic�q� � a�q�Ic0, with the
value a varied in the range from 0.24 (q � 0) to 0.56
(q � 6e) [9]. Then the supercurrent-charge-phase rela-
tion is approximated by the formula Is � Ic�q� sinw [14].
Because of finite Josephson coupling the effective capaci-
tance of the electrometer island becomes nonlinear [9,15].
For 2

1
2e & q &

1
2e its value is C0�q� � b�q�C, where

the factor b�q� * 1 can be assumed to be constant for
moderate l & 1.

The inductance L of the superconducting ring incorpo-
rating the Bloch transistor should obey two conditions:

� � 2pLIc�q��F0 , 1 and F2
0�2L ¿ kBT . (2)

The first relation ensures the single-valued dependence
of the total flux F � Fe 2 LIc�q� sin�2pF�F0�, which
threads the loop, on the external flux Fe � Fdc 1 Frf
applied to the loop (see, e.g., Ref. [16]). The constant
flux Fdc can be induced by dc current through an auxil-
iary coil (not shown in Fig. 1), while flux Frf is induced
by the tank circuit current. For sufficiently small values
of �, the flux F � Fe and the Josephson phase w �
2pF�F0 � 2pFe�F0. The second relation in Eq. (2)
ensures an exponential smallness of thermodynamic fluc-
tuations of flux F. Thus, the Josephson phase w across
the transistor behaves almost as a classical variable whose
value and (small) fluctuations are determined by the cur-
rent in the tank circuit.

The eigenfrequency of the tank circuit v0 �
�LTCT �21�2 and the frequency v � v0 of the rf drive
Vrf � Vv cosvt are assumed to be sufficiently low, i.e.,
v ø vJ � EJ�h̄ � Ec�h̄, and do not, therefore, excite
the Bloch transistor by means of an alternating Josephson
phase w�t�. In our model, w is considered a slowly varied
parameter in the Hamiltonian [9] of the transistor system.
The quality factor is Q � vL�RS � �vCT RS�21 ¿ 1,
where RS � RT 1 RA is the total series resistance of
the tank circuit. The dimensionless coupling coefficient
is k � M��LLT �1�2 ø 1, where M is the mutual induc-
tance, while the product

k2Q� . 1 . (3)

A similar regime of operation of single-junction SQUIDs,
proposed by Danilov and Likharev [17], offers a significant
experimental advantage in the sense of a large transfer
coefficient [18].

The noise associated with resistance RT is represented
by the voltage yT with a power spectrum

ST �v� �
2
p

QT RT , (4)

where QT � � h̄v
2 � coth� h̄v

2kBTT
� with TT symbolizing the

temperature of the tank circuit. The internal sources of
noise in the amplifier are represented by the two uncorre-
lated generators yA and iA with the spectral densities

SV �v� �
2
p

QARA and SI �v� �
2
p

QA

RA
, (5)

respectively, where QA � � h̄v
2 � coth� h̄v

2kBTA
� with TA sym-

bolizing the noise temperature of the amplifier in the
classical limit kBTA ¿ h̄v [4]. The (low) active input
impedance of the amplifier obeys the relation RA �
�SV �SI�1�2 while the “uncertainty product” �SV SI �1�2 $

h̄v�p [19].
The three principal sources of fluctuations (yT , yA, and

iA) [20] determine the device’s sensitivity which is de-
rived from the equations of the electric circuit of Fig. 1
linearized with respect to a small input signal and small
fluctuations. These equations are solved by the method of
harmonic balance. Whereas similar equations describing
the conventional (flux-sensitive) rf-SQUID were solved by
this method elsewhere [16,17,21], here we focus only on
the details associated with the charge origin of the input
signal.

Because of large Q and weak coupling k, the steady
oscillations of the tank circuit current, IT � Ia cos�vt 1
q �, and the Josephson phase,

w � a cos�vt 1 q � 1 w0 , (6)

are quasiharmonic with slowly varying parameters a �
2pMIa�F0 and q and constant phase w0 � 2pFdc�F0.
The dependence of the dimensionless amplitude a on the
detuning j0 � �v 2 v0��v0 is shown in Fig. 2. At a
sufficiently large amplitude Vv this dependence is multi-
valued. This property allows high values (theoretically
infinite) of the transfer coefficients “charge-to-amplitude”
and “charge-to-phase” to be realized. Because of the shift
of the resonance frequency in the tank circuit coupled
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FIG. 2. Resonance curves of the tank circuit for different val-
ues of the drive amplitude Vv and the value of product k2Q�.
The dotted lines correspond to a 10% increase in critical current
Ic�q� caused by a variation of charge q.

to the electrometer loop, the effective detuning is j �
j0 2 k2��q� cosw0J1�a��a. Here, J1 is the first-order
Bessel function. These peculiar curves are typical of the
rf-SQUID (see, e.g., Ref. [16]).

The coefficients ha � j
≠Ia

≠q j and hq � Iaj
≠q

≠q j govern-
ing the transformation of small charge variations dq into
variations of two orthogonal components of ac current in
the tank, dIa and Iadq , are expressed as ha � jjjh0 and
hq � �2Q�21h0, respectively. Here, the factor h0 is

h0 � m
M
LT

Ç
cosw0J1�a�

�2Q�22 1 jj̃

Ç
, (7)

the transfer function m � j
≠Ic

≠q j and dynamic detuning j̃ �
j0 2 k2� cosw0J 0

1�a�. Equation (7) in particular shows
that zero magnetic flux Fdc, giving w0 � 0 and, hence,
cosw0 � 1, ensures a maximum of either ha and hq . The
optimum amplitude of the rf drive should give the value of
a � 1.8 yielding the maximum value of �J1�max � j1 �
0.58.

For the amplitude (phase) detection of a low-frequency
signal (vs ø v) , the output resolution in bandwidth Df,

dqx � �q̃2	1�2 � h21
a,q �2pSa,qDf�1�2, (8)

is determined by the spectral density of the in-phase
(out-of-phase) fluctuations of the current flowing through
the amplifier,

Sa,q �
ga,q �j, j̃�

R2
S


ST �v� 1 SV �v�� 1 SI �v� , (9)

where ga�j, j̃� � Q22�Q22 1 4j2� �Q22 1 4jj̃�22 �
gq �j̃,j�. The output noise in the energy representation
eI � �q̃2	��2C0Df� finally is

e
�a,q �
I �

bda,q

k2Q�v

µ
RT

RS

QT 1
RA

RS

QA 1
RS

ga,qRA
QA

∂
.

(10)
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Here, the numerical factor b � pIc�� j2
1F0m

2C0�, while

da �
Q22 1 4j2

4j2 and dq �
Q22 1 4j̃2

Q22 (11)

for the amplitude and phase detection, respectively. Note
that, owing to the large value of product k2Q� [Eq. (3)],
the output noise figures e

�a,q �
I (they do not include the

back-action effect) may be smaller than 1
2 h̄ within the limit

TT , TA ø h̄v�kB.
The electrometer back action on the source of the in-

put charge is determined by low-frequency (�vs) fluctua-
tions of the electric potential of the transistor island Ũ �
F0

2pm
dsinww̃ [9]. Here w̃ are fluctuations of the Joseph-

son phase Eq. (6) and c. . . denotes averaging over time
t: 2p�v ø t ø 2p�vs. Finally, the input noise fig-
ure eU � C0�Ũ2	��2Df� for either regime is given by

e
�a�
U � e

�q �
U �

gak
2Q�

bv

µ
RT

RS

QT 1
RA

RS

QA

∂
. (12)

From Eq. (6) it follows that fluctuations Ũ are propor-
tional to fluctuations of amplitude ã; therefore, these two
signals are completely correlated. Because of this fact the
cross correlation eIU � j�q̃Ũ	j�2Df in the regime of am-
plitude detection has the largest magnitude which is equal
to the geometric mean of e

�a�
U of Eq. (12) and e

�a�
I , with

the third term omitted in Eq. (10). The energy resolution
of a narrow-band signal [9,21,22]

e � �eIeU 2 e2
IU�1�2 (13)

then is equal to

e � v21�daQA
�RT �RA�QT 1 QA�1�2. (14)

This equation shows that the electrometer figure of merit
e depends decisively on the amplifier parameter QA. In
particular, for RTQT ø RAQA and jjj ¿ �2Q�21, the fig-
ure e � QA�v, and its value approaches the SQL of 1

2 h̄
at kBTA , h̄v.

We arrive at the remarkable property of the rf-Bloch
electrometer: It converts an input charge into an output
signal introducing only insignificant noise on the stage pre-
ceding the amplifier. This is because the device operates
as a parametric converter vs ! �v 6 vs� ! vs (simi-
lar to the single-junction SQUID; see, e.g., Ref. [16]). In
such a scheme of an electrometer (in contrast to other
SET electrometers), the amplifier can be optimized as a
separate block. In the frequency range of 100–500 MHz,
the state-of-the-art narrow-band dc-SQUID-based ampli-
fiers make it possible to almost approach the SQL [23].
For such an amplifier the impedance matching with the
tank can be carried out by means of a transformer.

The set of experimental parameters for the Al tran-
sistor can be chosen as follows: EJ � Ec � 100 meV
(corresponds to C � C0�2 � 0.4 fF, Rt � 6 kV, Ic �
15 nA and vJ�2p � 25 GHz ¿ v�2p � 300 MHz),
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L � 20 nH (gives � � 0.3 and F
2
0�2kBL � 5 K ¿ T �

20 mK), Q � 300 (bandwidth �v�Q � 1 MHz) and
k2 � 0.3. These parameters yield the value k2Q� � 30
that ensures a large transfer coefficient. Using the
quantum-limited amplifier the charge resolution is ex-
pected to be equal to �C0h̄�1�2 � 3 3 1027e�Hz1�2.

Another important conclusion can be drawn with re-
spect to a possible “back-action-evading” measurement by
the rf-Bloch electrometer. For such a measurement it is
assumed that one quadrature component of the internal
noise is “squeezed” to less than SQL [24]. One of the
ways to achieve this is to apply to the tank two driving
signals with frequencies v1 and v2 which obey the rela-
tion vs � v1 2 v2 (see a similar proposal for rf-SQUID
in Ref. [22]). In this “degenerate” mode of operation [25]
the device is sensitive to a quadrature component, say X̂1,
of the input ac signal q � �X̂1 1 iX̂2�eivst whose Heisen-
berg uncertainties obey the relation dX̂1 3 dX̂2 $ C0h̄.
As a result, one side (dX̂1) of the “error box” is squeezed
while another (dX̂2) is increased, with their product kept
constant.

Finally, there is yet another advantage of the rf-Bloch
electrometer for qubit measurements: Its transducer (the
ring with transistor) is generically superconducting and the
tank circuit can also be made of superconducting mate-
rial. This device, when positioned near superconducting
qubit, is, therefore, free from the normal-electron excita-
tions which may significantly shorten the decoherence time
of qubit.
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