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The single-particle states of helium within a bundle of carbon nanotubes can range from nearly free-
particle dispersion to localization, even within a single bundle. At intermediate effective masses, the
corrugation in the external potential can be comparable to the intrasite He-He hard-core interaction.
This results in a commensurate/incommensurate transition, where the mobility of the doubly occupied
domain-wall solitons at high density greatly exceeds the corresponding hole mobility below the transition.
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Recent advances in materials synthesis hold the prospect
of producing hosts in which adsorbed helium (He) atoms
form a strictly one-dimensional (1D) system, immersed
in a background potential that can be tuned over a range
of amplitudes and periods, including even quasiperiodic
potentials. Specifically, we refer to 1D nanoporous sub-
strates such as bundles of carbon nanotubes [1], wherein
He atoms can be bound in the interstitial channels or within
the tubes themselves [2,3]. These experimental realiza-
tions could provide a unique opportunity to access exactly
solvable models of many-body quantum dynamics. Such
investigations are predicated on an understanding of the
single-particle properties of the active species. Here we
demonstrate that the single-particle properties of 4He in
carbon nanotube bundles can vary over an enormous range,
from nearly free-particle dispersion in tube interiors and
short-period interstitial channels to millionfold enhance-
ments of the effective mass in longer-period channels. In
between these two limits, the competition between the ex-
ternal potential and the He-He hard-core interaction can
induce an incommensurate-commensurate transition, with
broken particle-hole symmmetry about single filling of the
adsorption sites.

Single-walled carbon nanotubes of typical diameter
�1.4 nm self-organize into bundles of 1 to 100 tubes in a
triangular lattice. For such systems, the tube interiors and
the 1D interstitial channels within the bundle can form
strongly attractive substrates for adsorbed He (although
impurities and agglomerations of adsorbates on tube open-
ings could impede access to some adsorption sites [4]).
Adsorbates such as He could form 1D quantum systems
which occupy a regime very different from that of the
on-tube electronic states [5]. Previous studies showed how
weak interchannel interactions could induce condensation
of He within ordered bundles and briefly noted the exten-
sion to less well-ordered systems [6]. Here, we study the
single-channel dynamics of 4He across the range of hetero-
geneous systems that likely exist in current experimental
samples. We begin by calculating the single-particle states
and use these results to design model potentials for subse-
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quent many-body calculations. The potential is constructed
from a superposition of Lennard-Jones pair interactions
between the He atom and the surrounding carbon atoms
[2], either those in the three tubes bordering an interstitial
channel or, for states inside a single tube, the atoms of the
surrounding tube. We solve Schrödinger’s equation for
the adsorbed 4He using a plane wave axial basis, and La-
guerre or Bessel polynomials to describe the transverse
confinement. First we examine the case where each of the
three tubes bordering an interstitial channel has the same
wrapping indices: (10, 10):(10, 10):(10, 10), (17, 0):(17, 0):
(17, 0), and (12, 6):(12, 6):(12, 6) [7]. Later we examine
states within intersitial channels formed from tubes of
different wrapping indices, as well as within the core of a
single tube (using the Bessel function basis in this case).

For the homogeneous systems, the single-particle dis-
persion is a sensitive function of the relative axial align-
ment of the three tubes that define a single channel (see
Table I). When the tubes are perfectly aligned, the poten-
tial barrier impeding axial movement of He is highest, on
the order of 20 K. These configurations yield the largest
effective mass. When the tubes are out of alignment, the
potential barrier can decrease substantially due to cancel-
lations between the contributions of neighboring tubes,
yielding m� � m. For the chiral (12, 6):(12, 6):(12, 6)

TABLE I. Lowest-band effective mass enhancement m��m for
4He in various tube bundles. The range of values for the inter-
stitial channels reflects changes in the intertube axial offsets for
the three tubes bordering the channel.

Interstitial channel m��m
(10, 10):(10, 10):(10, 10) 1 $ 1.3

(17, 0):(17, 0):(17, 0) 1 $ 16
(12, 6):(12, 6):(12, 6) 1 $ 107�`�
(16, 1):(16, 1):(11, 8) `

(11, 8):(16, 1):(15, 3) `

Tube interiors m��m
(17, 0) 1.0
(10, 10) 1.0
(12, 6) 1.4
© 2001 The American Physical Society
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interstitial channel, the lowest few bands under perfect
axial alignment are nearly dispersionless, with an inter-
band separation of �10 K.

In the moderate-to-high mass regime, the dispersion is
governed by the weak overlap between adjacent axial bind-
ing sites and so is sensitive to changes in overlap due to
variations in the intertube separation. For example, in-
creasing the intertube separation from 3.3 to 3.4 Å in a
(17, 0):(17, 0):(17, 0) bundle reduces the maximal effective
mass enhancement from 16 to 8. Since the sets of tubes
given in Table I have slightly different diameters, we re-
calculated the effective mass for helium in a (12, 6) in-
terstitial channel with a slight (0.87%) dilation in bundle
lattice constant which brings the channel width to a value
midway between that of the (17, 0) and (10, 10) bundles
(which differ by only 0.5%). The effective mass changes
only very slightly, indicating that the large variations in
effective mass observed across the ranges of tubes studied
arise primarily from the variations in axial alignments and
wrapping angles.

Bundles likely contain a mixture of different tube wrap-
ping angles. In such a heterogeneous system, the intersti-
tial channel can be quasiperiodic, since the axial unit cells
of arbitrary tubes are usually incommensurate. If we ex-
clude trivial commensurations such as (12, 6):(14, 7) and
(17, 0):(18, 0), then very few commensurate cases remain,
all with very long axial periods. We make this problem
tractable from a band structure standpoint by choosing a
set of three nearly commensurate tubes and then slightly
stretching or shrinking the constituents until perfect com-
mensuration is achieved. Very slight (�1%) extensions or
contractions can make the axial period manageably small,
with only a minor perturbation to the potential (albeit one
that removes quasiperiodicity). As we shall see, much of
the physics in these cases occurs within a single unit cell,
so that the artificial periodicity that we impose for com-
putational convenience is not a major concern, so long as
one keeps in mind that the interesting longer-range conse-
quences of quasiperidicity are lost.

We examine two specific cases: channels bounded by
(16, 1):(16, 1):(11, 8) and (11, 8):(16, 1):(15, 3) nanotubes.
These systems show uniformly large lowest-band effective
masses that are essentially infinite (i.e., greater than �106).
The effective mass is independent of the axial registry
between tubes, because a nearly incommensurate system
such as this already samples over a dense mesh of local
intertube registries within a single unit cell. Curiously, it
is the heterogeneous bundle that is homogeneous under
relative axial shifts. Such shifts are likely to occur in
experimental bundles, since they are typically not perfectly
straight.

These single-particle results can be synthesized within
a simple toy model that captures much of the essential
physics. Figure 1 shows the isocurves of constant effective
mass in a simple sinusoidal potential of variable ampli-
tude and period. We identify the four classes of inter-
stitial channels [i.e., short-period homogeneous �n, n� and
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FIG. 1. The ratio of the effective mass of 4He to the free mass
as a function of amplitude and period of a model sine-function
1D potential. The contour lines have values 1.1, 1.5, 3, 10, 30,
100, 103, 104, 105, 106, 107, 108 from the left bottom to the right
top. Regions A, B, C, and D model (crudely) the four classes
of channels discussed in the text. Isocurves are functions of
�amplitude� �period�2.

�n, 0�, long-period homogeneous, and long-period hetero-
geneous] with successive regions A, B, C, D of the iso-
surface plot. Vertical motion on the plot corresponds to
changing the amplitude of the potential as if varying the
intertube axial offsets. As expected, m� and its range of
variation grow rapidly as the periodicity increases. This
simple model demonstrates that the high effective masses
arise from the potential barriers that can form within a
single long-period unit cell, as expected in a periodic ap-
proximate to Anderson localization.

The highly localized states in heterogeneous bundles
contrast sharply with nearly free-particle dispersion within
the cores of individual tubes themselves. The intratube
states for (17, 0), (10, 10), and (12, 6) nanotubes yield
lowest-band effective masses of 1.0, 1.0, and 1.4, respec-
tively, consistent with the effective mass of helium on
graphite [8]. The slightly higher effective mass inside the
(12, 6) tube reflects its longer axial unit cell. The sharp con-
trast between intratube and interstitial channel dispersion
indicates that a typical bundle contains distinct 1D sub-
strates for He that can have vastly different single-particle
properties. In addition, the interaction between He atoms
within a single nanotube core can vary in softness depend-
ing on the diameter of the tube. Since recent experiments
have succeeded in producing tubes of very small diameter
[9], we have also calculated the effective masses inside
(7, 0), (4, 4), and (6, 3) tubes (in smaller-diameter tubes
the overall interaction potential is not binding), obtaining
m� � 5.9, 1.0, and 1.0, respectively, at binding energies
of 2230, 2150, and 2470 K. The larger effective mass in
the (7, 0) tube results from coherent contributions around
the tube circumference in a system with moderate unit cell
length; the (6, 3) tube, in contrast, shows efficient helical
averaging to the potential.

The tight transverse confinement in an interstitial chan-
nel favors axial nodes for the lowest few bands and freezes
out the transverse degrees of freedom below roughly 10 K.
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The confinement of the dynamics to the axial direction
justifies the construction of a purely 1D effective potential
as a tractable starting point for diffusion Monte Carlo
(DMC) calculations of the many-body 4He ground state.
We can identify three distinct regimes defined by the
single-particle effective masses. For m� � 1, the system
behaves as an ensemble of 1D bosons in a smooth potential.
The long unit cell systems with m� ! ` lie in the opposite
limit of strong disorder and localized states, at least at
low density. We focus here on the intermediate regime,
wherein the effective mass enhancement is a few-fold.
This regime is realized in systems with relatively short
axial unit cells, wherein the height of the axial potential
barrier tends to be comparable to the He-He hard-core
interaction across the width of a typical local minimum in
the external potential.

As an archetype for this regime, we construct a 1D
potential with a periodic sum of Gaussians U�z� �
A exp�2z2�2s2� with height A � 17.6 K, width s �
0.452 Å, and spacing a � 4.26 Å, [i.e., the cell length
of an �n, 0� tube]. These parameters give m� � 2 for the
lowest band with a realistic band separation (qualitatively
similar results are expected across a range of parameter
values). The DMC calculation using this potential treats
N 4He atoms of mass m in one dimension with periodic
boundary conditions. The microscopic Hamiltonian is

Ĥ � 2
h̄2

2m

X
i

≠2

≠z2
i

1
1
2

X
ifij

V �zij� 1
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U�zi 1 la� ,

(1)

where zij � jzi 2 zjj, zi being the coordinate of the ith
4He atom. V is the Aziz He pair potential [10]. Substrate-
induced three-body and higher terms in the van der Waals
interaction could modify the detailed form of the effective
He-He interaction, but the qualitative effects described be-
low depend predominately on the short-range hard-core in-
teraction, which is essentially unaffected by the presence
of the substrate. The last term of (1) is the periodic external
potential. We use the following variational wave function:

C � exp

Ω
2
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u�zij� 2
X
i,l

y�jzi 2 laj�
æ

, (2)

where u and y have the form f�z� � a��1 1 bzm�. We
simulate densities in the range 0 # r # 0.4 Å21; the varia-
tional parameters a, b, and m (for both u and y) were op-
timized to yield the lowest energy estimate at each density.

Unbiased estimators were used for all quantities.
Although the wave function (2) breaks translational in-
variance, on account of the corrugation, it preserves per-
mutational symmetry among 4He atoms. This symmetry,
absent in the Jastrow-Nosanow wave functions commonly
adopted in DMC simulations of quantum solids, is essen-
tial in order to study superfluidity, which depends on the
indistinguishability of 4He atoms.

The system undergoes a T � 0 commensurate to in-
commensurate phase transition when the He wave function
changes from single to higher site occupancy. At low den-
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sity, the main contribution to the energy e�r� comes from
the long-range attraction of He atoms. Since particles oc-
cupy well-separated potential wells, the hard-core interpar-
ticle repulsion has little effect. The sharp break in the sign
and magnitude of the slope of e�r� at r � 0.235 Å21 (see
Fig. 2) reflects the onset of hard-core repulsion in doubly
occupied sites. When a site is doubly occupied, the hard-
core repulsion within its confines induces a significant
spread in the local He wave function. Figure 2 also shows
the local density of 4He, rm, at maxima in the 1D poten-
tial, (i.e., the minimal helium density in between adja-
cent binding sites). The sharp rise at the onset of double
occupancy signals a much higher effective intersite hop-
ping rate of the double-occupied domain wall above r �
0.235 Å21, as compared to that of the occupation hole at
lower densities. The calculation assumes a perfect lattice
translational symmetry, so that the double occupancy is
smeared over the entire system; introduction of a localized
perturbation could pin the domain walls.

The transition can also be seen in the 4He pair cor-
relation function g�z�, shown in Fig. 3 at three differ-
ent densities near the transition. At r # 0.23 Å21, the
pair correlation function reflects the periodicity of the ex-
ternal potential, whereas, at r $ 0.3 Å21, it is scarcely
distinguishable from that of free 1D 4He [11]. At r �
0.27 Å21, the pair correlation function shows beats be-
tween the competing periodicities.

Figure 2 also gives the 4He superfluid density [12] rS

as a function of the total 4He density inside the channel.
This quantity was evaluated by DMC as [13]

rS � r

Ω
limt!`

ø
�R�t� 2 R�0��2

2Lt

¿æ
, (3)

where �. . .	 is the ground state expectation value, R�t�
is the position of the center of mass of the 4He many-
body system at imaginary time t, and L � h̄�2Nm.
As the 4He density increases from zero, rS initially
increases slowly but then decreases as the system ap-
proaches the commensurate/incommensurate transition
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FIG. 2. Binding energy per 4He atom e�r� within the corru-
gated channel. The right-hand scale gives the 4He superfluid
density rS and the local He density rm at maxima of the corru-
gation potential. Below r � 0.23 Å21 there is less than one par-
ticle per site. DMC error bars are smaller than the symbol size.
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FIG. 3. Pair correlation function g�z� for two He atoms along
the channel, computed by DMC at different densities. Error bars
of g�z� are omitted for clarity; statistical uncertainties on g�z�
are typically of order 0.01 or smaller.

(r � 0.235 Å21), where rS vanishes. At higher densities,
rS rapidly increases. The strong asymmetry in slope
between opposite sides of the commensuration again
reflects a lack of particle-hole symmetry around single
filling. The loss of superfluidity at commensuration is
similar to the superfluid staircases in layered 4He films on
graphite [14,15].

Mott-Hubbard models for adsorbed He have been pro-
posed for finite (�10-particle) rings of He within ring-
shaped potential minima in certain zeolites [16] and in
4He films on graphite [15]. Here, the hard-core interac-
tion within the tight confines of a single lattice site induces
substantial change in the underlying single-particle orbitals
and thereby violates a standard approximation of the Hub-
bard model, that the bare hopping rate is independent of
site occupancy. The situation is distinct from the famil-
iar multiband Hubbard model, as double occupancy here
does not correspond to the occupation of a specific higher
band, but rather to a complex superposition of higher-band
single-particle basis states. The latter is more simply de-
scribed in terms of a site-occupancy-dependent hopping
rate, with a loss of particle/hole symmetry around single
filling. The electronic Hubbard model might also be ren-
dered more realistic, in some cases, through an occupation
dependence of the underlying orbital structure and hop-
ping rate.

Although the DMC calculation treated only the single
case of m� � 2, much of the underlying physics is generic.
The dramatic enhancement in the axial mobility of density
perturbations with increasing coverage is expected to apply
also for heterogeneous systems with higher single-particle
effective masses. The mobility of density perturbations
could be tuned over a wide range through the influence of
the hard-core interactions, as opposed to the more familiar
delocalization via long-range screening of the Coulomb in-
teractions in electronic systems. These effects are not nec-
essarily restricted to carbon nanotube bundles. Recently
developed large-pore zeolites and slightly larger-scale
MCM-41 porous silicates [17] provide additional materials
systems wherein the pore diameter and corrugation could
be tuned to obtain a 1D substrate for He adsorption. The
bare walls in such systems are typically highly corrugated
and localize the first layers of adsorbed He. However, the
range of pore/adsorbate combinations available suggests
that one might find a preplating absorbate in a channel of
appropriate size, so that the preplated dead layer softens
the corrugation in the external potential and surrounds a
central channel occupied by 1D He of variable m�.
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