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The stagnation pressure ps of imploding cylindrical (n � 2) and spherical (n � 3) shells is found
to scale as ps�p0 ~ M

2�n11���g11�
0 , where M0 is the Mach number of the imploding shell and p0 its

maximum pressure. The result holds approximately for Mach numbers in the range 2 , M0 , 25
relevant for inertial confinement fusion capsules and is of key importance for their ignition energy scaling.
It is derived analytically on the basis of similarity solutions for an ideal gas with adiabatic exponent g.
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Inertial confinement fusion (ICF) relies on the implosion
of spherical shells to ignite enclosed fuel. The shells are
driven by external beams. In a recent paper [1], Herrmann
et al. report a new scaling law for the minimum ignition
energy of ICF capsules

Eign ~ a1.8860.05
if p20.7760.03

0 y25.8960.12
imp (1)

in terms of the in-flight adiabat aif of the shell at peak im-
plosion velocity yimp and drive pressure p0. The adiabat
parameter a � p�pdeg denotes the pressure of the com-
pressed fuel shell relative to that of a fully degenerate
Fermi gas at the same electron density. Formula (1) has
been extracted from a large number of implosion simula-
tions. In the present paper, we interpret it by means of
a similarity solution [2] and derive the underlying theory
analytically.

The similarity solution describing the implosion of a
hollow spherical gas shell is shown in Fig. 1 in terms of
fluid trajectories in a radius-time diagram. Insets illustrate
typical density profiles close to the time of void closure
(t � 0). In ICF implosions, ignition and burn occur when
the imploding fuel stagnates behind the shock emerging
from the center after void closure. Notice in Fig. 1 that
the fuel is almost isobaric in this region.

The main result of this paper is that the ratio ps�p0 of
fuel pressures at times of stagnation and void closure is
the same for each fluid element and depends almost ex-
clusively on the Mach number M0 of the imploding shell.
For a spherical gas shell with adiabatic exponent g � 5�3,
one finds

ps�p0 ~ M3
0 . (2)

ICF ignition requires that temperature Ts and density-
radius product rsRs of the hot spot, centrally igniting
the stagnating fuel, exceed certain values. Treating, in
particular, the product psRs ~ rsRsTs as an invariant,
set by fusion physics, one finds that the hot spot energy
Es ~ psR3

s � �psRs�3�p2
s scales ~ p22

s . This is a key as-
sumption of the isobaric ignition model [3], which well
0031-9007�01�86(15)�3336(4)$15.00
reproduces simulation results. The model also implies that
Es is a fixed fraction of the total fuel energy Eign for opti-
mal conditions, and this leads to

Eign ~ p22
s ~ p22

0 M26
0 ~ a1.8

if p20.8
0 y26

imp , (3)

making use of Eq. (2), M0 � yimp�cif, c2
if ~ p0�r0 and

aif ~ p0�r5�3
0

, where p0 and r0 are now identified with
peak pressure and density of the shell.

The intriguing coincidence of Eqs. (1) and (3) has trig-
gered the present work. Formula (1) is based on state-of-
the-art ICF simulations accounting for real materials and
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FIG. 1. Self-similar solution of a spherically imploding shell
in a r, t diagram for a � 0.7, k � 3, and g � 5�3. The inner
surface of the shell (jF � 0.96) and the trajectory of rebounding
shock (jS � 0.198) are represented by thick j � r�ta lines.
The t � 0 axis corresponds to j � `. Fluid elements move on
dotted trajectories with almost constant velocity. Insets show
density profiles at different times; also shown are entropy at
t�t0 � 21 as well as pressure and temperature distributions
at t�t0 � 1.6. Normalization is such that sonic point B is at
jB � r0�ta

0 � 1; r0, T0, and p0 refer to the fluid element at
r � r0 and t � t0, which is considered as an outer boundary.
© 2001 The American Physical Society



VOLUME 86, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 9 APRIL 2001
energy transport, while Eq. (3) is restricted by ideal gas dy-
namics (no transport) and highly idealized boundary con-
ditions. The crucial relation is Eq. (2) which had been
obtained before in [2], but only as a numerical side re-
sult. Here we derive it analytically in general form for
both cylindrical and spherical geometry and arbitrary g.

The basic analysis is that of Guderley [4] studying cen-
trally converging shock waves and that has been outlined
at several places in the literature; see, e.g., Ref. [2]. It
postulates universal behavior of imploding flows near the
center of convergence and that interfaces such as the shell’s
inner surface (jf) and the rebounding shock (js), see
Fig. 1, run on trajectories R � jta , characterized by a
constant j and an exponent a. Corresponding velocities
are u � dR�dt � aR�t and prompt the similarity ansatz

u�r , t� � �ar�t�U�j�, c�r , t� � �ar�t�C�j� ,

r�r , t� � rkG�j�, j � r�jtja ,
(4)

for the hydrodynamic fields of velocity u�r , t�, sound ve-
locity c�r , t�, and density r�r , t�. The essential feature of
this ansatz is that the similarity coordinate j and the re-
duced functions U�j�, C�j�, and G�j� are invariants with
respect to scale transformations of time, radius, and mass.
The corresponding scaling group [5] contains the expo-
nents a and k as free parameters.

Ansatz (4) has some immediate consequences. It im-
plies that, at the time of void closure t � 0 (j � `), all
hydrodynamic functions are represented by power laws

u�r , 0� � u0r2l, c�r , 0� � c0r2l,

r�r , 0� � r0rk ,

with l � 1�a 2 1 and front factors obtained from (4)
with t � �r�j�1�a in the limit j ! `. Note that the
flow is characterized by uniform Mach number M0 �
u0�c0 at t � 0. At the same time, the entropy distribution
A�r, t � 0� � p�rg � A0r2e is determined by the expo-
nent e � k�g 2 1� 1 2l. For e . 0, entropy diverges in
the center, similar to that of stagnating ICF fuel. The en-
tropy distribution at t�t0 � 21 is indicated in Fig. 1. In
the following, M0 and e are used to characterize the im-
ploding shells rather than the equivalent parameters a and
k. As it turns out, self-similar solutions exist for a continu-
ous range of M0 and e values.

Another consequence of Eq. (4) refers to trajectories
R�t, a� of particular fluid elements a, depicted in Fig. 1
by dotted lines. They are determined by

d lnR�d lnj � U�j���U�j� 2 1� , (5)

following directly from dR�dt � u�R, t� � �aR�t�U�j�,
where R�j, a� is now interpreted as a function of j and
time follows from t�j, a� � �R�j�1�a . Integrating Eq. (5)
from j1 to j2 for a given a, we find that ratios
R�j2, a��R�j1, a� do not depend on which fluid trajectory
is considered, but are the same for each element a. Be-
cause of relations (4), the same is true for ratios of density,
pressure, and other physical quantities. Choosing j1 � `
(t � 0 axis) and j2 � js (rebounding shock), one obtains
the important result that the ratios rs�r0, ps�p0, etc. are
the same for all fluid elements. These final enhancements
of density and pressure during shell stagnation represent
the central issue of this paper. As we shall see, they
depend almost exclusively on the Mach number M0, but
very little on the entropy distribution.

The explicit solution is derived from the equations of
ideal gas dynamics

≠tr 1 ≠r �ru� 1 �n 2 1�ru�r � 0 ,

≠tu 1 u≠ru 1 �1�r�≠rp � 0 , (6)

≠t�p�rg� 1 u≠r�p�rg� � 0 ,

involving no transport processes. The ideal gas equation
of state is used with pressure p � rc2�g. Entropy is con-
served except across shock boundaries. These equations
are invariant under the scaling group. For the scale-
invariant solutions (4), they reduce to the ordinary differ-
ential equations [2]

a1dU 1 b1dC 1 d1d lnj � 0 ,

a2dU 1 b2dC 1 d2d lnj � 0 ,
(7)

with coefficients a1 � C�m, a2 � U 2 1, b1 � U 2 1,
b2 � mC, d1 � C�U�1 1 n�m� 2 1�a�, d2 � U�U 2

1�a� 1 C2�m 1 �k 1 ml���g�1 2 U���, and m �
2��g 2 1�. The coefficients are independent of G and
space-time variables r , t, and j. The problem therefore
reduces to the single ordinary differential equation

dU�dC � D1�U, C��D2�U, C� (8)

giving solutions U�C�; the j dependence is then obtained
by quadrature of

d lnj�dC � D0���U�C�, C����D2���U�C�, C��� , (9)

where the determinants are given by D0 � a1b2 2 b1a2,
D1 � b1d2 2 d1b2, and D2 � d1a2 2 a1d2.

The imploding shell solution, shown in Fig. 1, is given
as the thick solid curve in the U, C plane of Fig. 2. A
unique feature is that it describes the implosion both before
and after void closure. The branch OBF corresponds to the
imploding shell (t , 0), while the branch OS1S2E refers
to the shell after void closure (t . 0); OS1 describes the
outer part still imploding, S1S2 the shock front emerging
from the center, and S2E the gas stagnating in the center
behind the shock front. Points O, B, and D are singular
points, for which dU�dC ! 0�0. From Eq. (9) one finds
that j ! ` at point O. It therefore describes the outer part
of the imploding shell, and the slopes of the solution curves
OB and OS1 close to O are equal to the Mach number
M0 � U�C.

We emphasize that the imploding shell solution pre-
sented here is almost identical to the imploding shock so-
lution first discussed by Guderley in [4]. In both cases,
the t , 0 branch has to cross the sonic line C � 1 2 U
at singular point B (crossing it at other points would lead
3337
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FIG. 2. Self-similar solution of Fig. 1 in a U, C plane. Dots
O, B, D, and E, F located at C ! ` represent singular points,
where dU�dC ! 0�0. The solid curve OBF corresponds to the
imploding shell for t , 0 and curve OS1S2E to the gas for t .
0 after void closure; they match at point O where j � r�jtja �
`; it describes the solution at t � 0, and also outer gas layers
at r ! ` for jtj fi 0. The jump S1S2 describes the rebounding
shock at js, and S2E the stagnating gas at 0 # j # js.

to double-valued, nonphysical solutions). For Guderley’s
shock converging in uniform gas, implying k � 0, the
solution has to satisfy strong shock conditions at the in-
ner boundary; i.e., it has to hit the strong shock point at
UA � 2��g 1 1�, CA �

p
2g�g 2 1���g 1 1�, and this

singles out a unique value of a. On the other hand, the
imploding shell solutions considered here have to reach
the inner surface point F at UF � 1 and CF � `, and
this is possible for a continuous set of a and k values
[2]. Crossing the sonic point B, however, is of deep sig-
nificance also in the present context, because it determines
the Mach number M0 of the imploding shell as a function
of n, g, a, and k; see Eq. (15).

After void closure, the imploding shell is converted into
the stagnated gas behind the rebounding shock. Remark-
ably, this state can be derived analytically from Eqs. (8)
and (9). It is described by the separatrix running toward the
singular point E at UE � 2�k 2 2l��ng and CE ! `,
where jE � 0. The explicit solution, valid asymptotically
for r ! 0 and t . 0, is

u�r , t� � 2a�k 2 2l���ng�r�t ,

r�r , t� ~ rne�nta�k2ne�n�, (10)

p�r , t� ~ r0ta�k22l�,

with n � ng 1 k 2 2l. For e . 0, the density vanishes
in the center, while the temperature T ~ c2 diverges such
that the pressure p ~ rT is uniform. In the special case of
k � 2l, these asymptotic results hold even globally and
describe an isobaric gas at rest. In this case, the solution
branch S2E coincides with the U � 0 axis in Fig. 2. The
locations of the shock points S1 and S2 are obtained from
the Hugoniot relations; see [2].

The goal of the present paper is to study the ratios of
pressure ps�p0 and also density rs�r0 as functions of
Mach number M0 and entropy parameter e. Numerical
3338
results, obtained for a set of a and k values chosen to
cover the range of 2 , M0 , 25 and 0.3 , e , 6, are
plotted versus M0 in Fig. 3. For spherical shells (n � 3)
of g � 5�3 gas, the results are well represented by ps�p0 �
3.6M3

0 and rs�r0 � 2.4M
3�2
0 . For different e at fixed

M0, pressure and density ratios are almost identical. It
appears that the final compression ratios depend strongly
on the Mach number of the imploding shell, but are rather
independent of the entropy distribution. This remarkable
result will now be derived analytically.

Presuming large Mach numbers M � U�C ¿ 1, we
find the approximate integral

M 	 M0��1 2 U���1 2 aU�n�1�m (11)

of Eq. (8) for solution curves starting at point O. We apply
it to branch OB to determine M0 and also to branch OS1S2
for getting rs�r0 and ps�p0. Strong shock relations are
used to describe the jump S1S2. Adiabatic compression
of fluid elements between void closure (point O) and the
time of the shock passage (point S1) satisfies r ~ cm.
Note also that fluid elements move at almost constant
velocity during this period [derive d lnu�d lnj 	 0 from
Eqs. (4)–(9) and compare Fig. 1]. This leads to c ~ 1�M
and r1�r0 	 �1 2 aU1�n��1 2 U1� 	 an�1 2 U1�n21,
valid for �1 2 U1� ¿ 1. Invoking also strong shock
compression

rs�r1 � �1 2 U1���1 2 U2� 	 G (12)

with G � �g 1 1���g 2 1�, we find the total compression
ratio

rs�r0 � �rs�r1� �r1�r0� 	 �aG�n�1 2 U2�n21. (13)

Indices 1 and 2 refer to S1 and S2, respectively. Similarly,
the final pressure ratio can be split up into the adiabatic
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FIG. 3. Compression ratios ps�p0 and rs�r0 of fluid elements
between times of void closure (index 0) and passage of rebound-
ing shock (index s) plotted versus Mach number M0. Dots rep-
resent numerical solutions of the similarity model and lines refer
to analytical scaling formulas (open dots correspond to cylindri-
cal, full dots to spherical geometry). The small scatter of the
results around the power laws reflects different values of the en-
tropy parameter e.
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contribution p1�p0 � �r1�r0�g and the strong shock con-
tribution ps�p1 	 2g��g 1 1� ��1 2 U1��C1�2. Com-
bining these relations with Eqs. (11) and (12), one obtains

ps

p0
	

2g

g 2 1
�1 2 U2�n11

�1 2 G�1 2 U2��2 �aG�nM2
0 . (14)

We still have to express �1 2 U2� by M0, exploiting the
condition that the solution curve in the upper part (U . 0)
of Fig. 2 crosses the sonic line C � 1 2 U at B. The
positions of the singular points B and D are determined by
D1�U, 1 2 U� � D2�U, 1 2 U� � 0. From the resulting
quadratic equation for U � UB,D , one obtains approxi-
mately UB 	 1, �1 2 aUB� 	 �1 2 a�, and �1 2 UB� 	
�l�n���1 2 U2�, where U2 	 2 �k 2 2l���ng� is the
velocity at S2 behind the rebounding shock. Substituting
these expressions in Eq. (11), we obtain

M0 	 �1 2 a�n�m�na��1 2 a��111�m�1 2 U2�111�m.
(15)

Making use of Eq. (15), the density ratio (13) can be writ-
ten in the form

rs�r0 	 f�a�M2�n21���g11�
0 (16)

with f�a� � Gnn12na�1 2 a��12n�G� �n21�. For typical
cases with n , G, the front factor f�a� depends weakly
on a and can be replaced by a constant in the relevant
range of 0.6 , a , 0.9, corresponding to M0 and e val-
ues covered in Fig. 3. For n � 3 and g � 5�3, one ob-
tains fmax 	 2.7 and 2�n 2 1���g 1 1� � 3�2 in good
agreement with the numerical results in Fig. 3. The pres-
sure ratio (14) is not immediately of power law structure
in x 
 1 2 U2, but approximating the function F�x� 

xn11��1 2 Gx�2 by the power law F�x� � F1xs at x � 1,
one finds s � n 2 g and F1 � �g 2 1�2�4. This leads to

ps�p0 	 g�a�M2�n11���g11�
0 . (17)

For n � 3 and g � 5�3, it reproduces the central
scaling relation ps�p0 ~ M3

0 . Again, the front factor
g�a� � g�g 2 1�Gnng2nag�1 2 a��12n�G� �n2g��2 is
a weak function of a and can be replaced by its maxi-
mum. For n � 3 and g � 5�3, we find gmax � 3.4 in
reasonable agreement with the numerical result. From the
derivation, it should be clear that the power formula (17)
is only of approximate validity in an intermediate range of
Mach numbers M0. This is also visible in Fig. 3, where
the straight-line power law (17) touches tangentially the
somewhat curved numerical results. Notice that the fitting
point x 
 1 2 U2 � 1 chosen above is the most natural
one, because it corresponds to U2 � �k 2 2l��ng � 0,
and therefore to the distinguished special case in which
the stagnated gas is uniform and at rest; see Eq. (10). The
scaling laws (16) and (17) also describe the numerical
solutions in Fig. 3 for cylindrical �n � 2� geometry,
giving ps�p0 ~ M

9�4
0 and rs�r0 ~ M

3�4
0 for g � 5�3.

The approximation leading to Eq. (17) does not apply to
n � 1; the case of plane geometry is intrinsically different
because there are no convergence effects.

In conclusion, we have derived approximate scaling
laws describing pressure and density of cylindrically and
spherically converging gas shells when stagnating in the
center. They are based on a two-parameter similarity so-
lution of ideal gas dynamics which describes both the
imploding shell and stagnation. It turns out that stagna-
tion pressure and density scale almost exclusively with the
Mach number of the imploding shell, but are insensitive to
its entropy distribution. As the new result, this is derived
analytically in general form for cylindrical and spherical
geometry and arbitrary g.

Do the present results apply also to general, non-self-
similar implosions? We cannot answer this question on
the model basis presented here. In ICF capsule implosions,
density and entropy distributions are strongly modified by
energy transport and other effects; they are far from being
self-similar. The remarkable coincidence, however, of the
general scaling law (1) obtained by Herrmann et al. [1] and
the model result (3) may indicate that the scaling formula
(17) has a larger range of validity than the model it is based
on. Indeed, the insensitivity with respect to the entropy
distribution may imply that the scaling with M0 holds also
for other non-self-similar entropy distributions. It should
be a challenge to check this conjecture in more detail.

The authors acknowledge controversial, but helpful dis-
cussions with M. Basko on the topic of this paper.
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