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Static Friction between Elastic Solids due to Random Asperities
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Several workers have established that the Larkin domains for two three-dimensional nonmetallic elastic
solids in contact with each other at a disordered but atomically flat interface are enormously large,
implying that there should be negligible static friction per unit area in the macroscopic solid limit. In
contrast, the present Letter argues that when the Larkin domains are calculated for disorder on the
multiasperity scale, they are much smaller than the interface size. This can account for the virtual
universal occurrence of static friction.
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It is well known that one must apply a minimum force
(i.e., static friction) in order to get two solids, which are in
contact, to slide relative to each other. It has been argued,
however, that there might be no static friction for non-
metallic crystalline surfaces, which are incommensurate
with each other. Aubry showed this for the weak poten-
tial limit of the one-dimensional Frenkel-Kontorova model
[1], and recently He et al. [2] and Muser and Robbins [3]
have shown for clean weakly interacting two-dimensional
incommensurate interfaces that the force of static friction
per unit area falls to zero as A21�2 in the thermodynamic
limit, where A is the interface area. Even identical solids
are incommensurate if their crystalline axes are rotated
with respect to each other. Disorder, however, can pin con-
tacting solids, just as it pins sliding charge density waves
[4,5] and vortices in a superconductor [6]. Recently, it has
been shown that Larkin domains (i.e., domains over which
the solids are able to distort to accommodate the disor-
der at the interface) for contacting three-dimensional elas-
tic solids are enormously large compared to typical solid
sizes [7–9], implying that the force of static friction per
unit area due to interface disorder should also fall off as
A21�2 in the thermodynamic limit. In contrast to Refs. [2]
and [3], where it was proposed that the presence of a sub-
monolayer film of mobile molecules at the interface is a
requirement for the occurrence of static friction between
incommensurate surfaces, it is argued that disorder that
occurs on the multimicron scale, due to disordered asperi-
ties, results in Larkin domains that are much smaller than
the interface size, even for clean interfaces, implying that
there is static friction for a macroscopic surface.

Here scaling methods, like those used by Fisher for
charge density waves (CDW) [10], are used to study static
friction for disordered interfaces. This can be accom-
plished by minimizing the potential energy of the solid
in contact with a rigid disordered substrate at z � 0 with
respect to the size of a Larkin domain [4], which is ex-
pected to give qualitatively correct results for the prob-
lem of two elastic disordered solids in contact. Given that
the energy density of the elastic solid is given approxi-
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mately by

�1�2�E0j=uj2 1 V �r�d�z� , (1)

where E0 is an effective Young’s modulus and V �r� is the
potential per unit area of the disordered substrate and u�r�
is the local displacement of the solid, the energy of a single
Larkin domain is given by

E � �1�2�L0L2E0

3 �j=0
tu

0j2�L2 1 j≠u0�≠z0j2�L02� 2 V0bL , (2)

where b is an atomic length scale (e.g., a lattice constant),
L is the width, and L0 is the height of the domain, j=0

tu
0j2 �

j≠u0�≠x0j2 1 j≠u0�≠y0j2, where we assume that the local
displacement u varies on length scales L and L0 in the
x and y and the z directions, respectively. That is, we
assume that u�x, y, z� has the form u0�x0, y0, z0�, where the
function u0 varies by an amount of the order of atomic
length scales when x0, y0, and z0, defined by �x0, y0, z0� �
�x�L, y�L, z�L0�, each vary by an amount of order unity.
Here V0 is a typical value of the potential per unit area.
When Eq. (2) is minimized with respect to L0 one finds
that L0 � L and the energy per unit area at the interface is
given by

E�L2 � ��1�2�E0j=0u0j2 2 V0b��L (3)

(where we use the average value of j=0u0j2 here), whose
absolute minimum occurs for infinite L (more correctly L
comparable to the interface length) for E0j=0u0j2 . V0b
(i.e., when elastic energy dominates), implying that the
static friction per atom decreases as the reciprocal of the
square root of the surface area.

Fisher [10] has shown that above the critical dimension
of 4, charge density waves are not pinned for typical im-
purity strengths, but fluctuations in the impurity concentra-
tion and strength lead to pinning. (The critical dimension
for two solids in contact at a disordered interface is 3, as
seen above.) Consider the effect of fluctuations in the de-
fect concentration for thick solids for atomic level disorder,
by dividing the solid into boxes of length L and examin-
ing the percentage of blocks at the interface of sufficiently
© 2001 The American Physical Society
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large defect concentration to be in the “strong pinning”
regime, where the substrate force on each block domi-
nates over the interblock elastic forces. Such blocks will
be referred to as “strong blocks.” Consider the parameter
l � V1�E0b3, where b is of the order of a lattice spac-
ing and V1 is the strength of the potential due to a defect
acting on an atom in the second surface. Let nc � c0L2

be the number of defects within a particular block and c0

(where c0 . c, where c is the average defect concentration
for the interface), the defect concentration strong enough
for the block to be considered a strong block. Then the ra-
tio of the interaction of a typical strong block with the
substrate to typical elastic energy E0b3 is l�c0L2�1�2. The
interface area surrounding each strong block is the total in-
terface area A divided by the number of strong blocks at the
interface, PA�L2, where P is the probability of a particu-
lar block being a strong one. Then L2�P is the interface
area surrounding each block and the typical length L0 over
which the elastic interaction between two strong blocks
acts is its square root, L0 � L�P1�2. Then the total elastic
energy associated with each strong block is the product of
the volume per strong block � �L0�3 and the elastic energy
density, which is proportional to j=uj2 [which scales as
�L0�22] or L0. The criterion for a block to be a strong one
is l�c0L2�1�2 ¿ L0, or l ¿ �c0P�21�2. Since c0P , 1,
this violates our previous assumption that l ø 1, imply-
ing that such fluctuations cannot result in strong pinning.
There are also fluctuations in the locations of the points of
contact within the defect potential wells within each Larkin
domain; it too does not lead to static friction [11].

The above arguments seem to imply that weakly inter-
acting disordered surfaces cannot exhibit static friction.
We shall see, however, that unlike weak atomic scale de-
fects, for which the elastic interaction between them can
dominate over their interaction with the second surface,
for contacting asperities that occur when the problem is
studied on the multimicron scale, the interaction of two
contacting asperities from the two surfaces dominates over
the elastic interaction between asperities in one solid. It is
suggested here that this could be responsible for the virtual
universal occurrence of static friction. Roughness due to
asperities is well described by the Greenwood-Williamson
(GW) model [11–14], in which there are assumed to be
elastic spherical asperities on a surface with an exponen-
tial or Gaussian height distribution in contact with a rigid
substrate, especially for relatively light loads. Volmer and
Nattermann’s discussion of static friction [14] is not quali-
tatively different from that of Ref. [12]. In the GW model,
the total contact area is of the order of

Ac � 2psRcN
Z `

h
ds f�s� �s 2 h� , (4)

where f�s� is the distribution of asperity heights z, where
s � z�s, where s is a length scale associated with the
height distribution, and h is the ratio of the distance of
the lower part of the bulk part of the sliding solid, from
the surface in which it is in contact to s, Rc is the radius of
curvature of an asperity, and N is the number of asperities
above a certain size, independent of whether they are in
contact [11–14]. Taking the interaction of a single asperity
with the substrate equal to the product of the contact area
and a shear strength for the interface, the GW model gives
friction approximately proportional to the load [12,13].

The energy of the interface consists of two parts. One
part is the single asperity energy, which consists of the
interaction energy of an asperity with the substrate plus
the elastic energy cost necessary for each asperity to seek
its minimum energy, neglecting its elastic interaction with
other asperities, which is independent of the asperity den-
sity. The second part includes the elastic interaction be-
tween asperities within the same solid, which depends on
the asperity density. In order to determine these energies,
let us model the interaction of the �th asperity with the
substrate by a spherically symmetric harmonic potentials
of force constant a�. Assume that in the absence of distor-
tion of the solid, the �th asperity lies a distance D� from the
center of its potential well. Let u� be the displacement of
the �th asperity from its initial position. We use the usual
elastic Green’s function tensor of the medium at a distance
r from the point at which a force is applied at the interface,
but for simplicity, we approximate it by the simplified form
G�r� � �E0r�21, where E0 is Young’s modulus [15]. Then
the equilibrium conditions on the u’s are

u� � �E0a�21a��D� 2 u��

1
X
j

�E0R�,j�21aj�Dj 2 uj� , (5)

where a is a parameter of the order of the size of the
asperity, and R�,j is the distance between the �th and jth
asperities. To lowest order in the interasperity interaction,
the approximate solution for u� is

u� � u0
� 1 �1 1 �E0a�21a��21

3
X
j

�E0R�,j�21aj�Dj 2 u0
j � , (6)

where u0
� � a�

a�1E0aD� is the zeroth order approximation
[i.e., the solution to Eq. (5) neglecting the second term on
the right hand side of the equation]. Since the contacting
asperities are randomly distributed over the interface, we
can estimate the second term (i.e., the summation over j)
on the right hand side of Eq. (6) by its root mean square
(rms) average which is estimated by integrating the square
of the summand over the position of the jth asperity, which
is in contact with the substrate, over its position and multi-
plying by the density of asperities in contact with the sub-
strate r. Since the angular integrals give only a factor of
order unity, we need evaluate only the integral over the
magnitude of R�,j , giving an rms value of the sum over
R21 of order �r ln�W�a��1�2 where here W is the width
of the interface and a is the asperity size. For W � 1 cm
3313
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and a � 1026 cm, �ln�W�a��1�2 is of order unity. Since
the shearing of the junction at the area of contact of two
asperities involves the motion of two atomic planes relative
to each other, the distance over which the contact potential
varies must be of the order of atomic distances. Then, if we
denote the width of the asperity contact potential well by b,
3314
of the order of an atomic spacing, we must choose a typical
value for a such that ab is of the order of the shear rupture
strength of the asperity contact junction. Thus, a� ¿ E0a.
Hence, u0

� � D�, implying that in the low asperity den-
sity limit, all asperities lie in their potential minima. The
asperity-asperity interaction can be estimated from the en-
ergy of the system, which can be written as
�1�2�
X
j

ajjDj 2 ujj
2 1 �1�2�E0

X
j

Z
d3r j=G�r� ? �aj�Dj 2 uj��j2. (7)
It follows from Eqs. (5)–(7) that the two lowest order non-
vanishing terms in an expansion of the energy of the sys-
tem in powers of r1�2 are the zeroth and first order ones.
Zeroth order in the asperity density in Eq. (7) is of the or-
der of aD2, where a is a typical value of aj , and D is a
typical value of Dj . The term linear in r1�2 is easily shown
to be of the order of E0a2D2r1�2 to zeroth order in E0a�a.
Since it depends on r it represents an interaction energy
between the asperities. Then, the mean interasperity inter-
action is proportional to the square root of the number of
contacting asperities per unit surface area, given by

r�h� � �N�A�
Z `

h
ds f�s� , (8)

where A is the total surface area and N is the total number
of asperities whether in contact with the substrate or not.
The integral in Eq. (4) divided by the integral in Eq. (8),
which is proportional to the contact area per asperity and
the square root of the integral in Eq. (8) are plotted as
a function of the load, which is given in the GW model
[12] by

FL � �4�3�E0N�Rc�2�1�2s3�2
Z `

h
ds f�s� �s 2 h�3�2,

(9)

in Fig. 1. [Since Ac and r�h� are functions of h, and h can
be determined from the functional relationship between h
and FL, they can be plotted as a function of FL.] A Gauss-
ian distribution is assumed here for f�s� [i.e., f�s� �
�2p�21�2e2s2�2]. Since the square root of Eq. (8) drops to
zero in the limit of vanishing load, whereas Eq. (4) divided
by Eq. (8) approaches a nonzero value, this implies that the
interface will approach the regime in which the asperity-
substrate interaction dominates over the interasperity inter-
action in the limit of vanishing load.

Let us now support our conclusions with some sample
numerical calculations using typical values for the quan-
tities which occur in the application of the GW model to
this problem. Following Ref. [13], we choose s � 2.4 3

1024 mm and Rc � 6.6 3 1022 mm, and assume that
there is a density of 4.0 3 103 asperities�mm2. Then by
performing the integrals in Eqs. (4), (8), and (9), we find
that for FL�A � 3.98 3 1024 N�mm2, where A is the
apparent area of the interface, the total contact area divided
by A is 3.03 3 1025, and the contact area per asperity
from the ratio of Eqs. (4) and (8) is 2.44 3 1025 mm2.
Also, r�h�1�2, which is equal to the square root of Eq. (8),
is 1.11 mm21. The mean interasperity interaction force
is approximately equal to the derivative of the first order
term in r1�2 in the energy given above Eq. (8) with respect
to D or E0a2r�h�1�2D, where a is taken as the square
root of the mean contact area per asperity divided by p.
The mean strength of the force acting on an asperity, due
to the solid with which it is in contact, will be estimated
by the product of its contact area and the shear rupture
strength Er . Then, the condition for the latter quantity to
dominate over the asperity-asperity interaction, Erpa2 .

E04pa2r1�2D or Er�E0 . 4r�h�1�2D, is easily satisfied
by the above calculated quantities since the right hand side
is 4 3 1027 and the left hand side cannot be too small
since Er , for typical asperities which are too small to have
dislocations, is of the order of the shear modulus of the
interface, which is the same order of magnitude as E0.

Although for higher loads the system appears to move
towards the “weak pinning” limit, the latter conclusion is
most likely incorrect because it does not take into account
the fact that the distribution of asperity heights contains
asperities which are much higher than average. These as-
perities will be compressed much more than a typical
asperity, making the friction force on them considerably
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FIG. 1. The curve which is lower at the right is a plot of the
integral in Eq. (4) divided by the integral in Eq. (8), which is
proportional to the area per asperity. The curve which is higher
on the right is a plot of the square root of the integral in Eq. (8),
proportional to the square root of the asperity density, versus the
integral in Eq. (9), proportional to the load. All quantities are
dimensionless.
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FIG. 2. Equation (11) (the higher curve), proportional to the
contact area per asperity of height h . hL, and the square
root of Eq. (10) (the lower curve), proportional to the square
root of the asperity density, are plotted versus the load, given
by Eq. (9), divided by �4�3�E�b�2�1�2s3�2. All quantities are
dimensionless.

larger than average. Since the probability of such asperi-
ties occurring is relatively small, however, they will be
typically far apart, putting them in the strong pinning limit.
For example, the probability of the ratio of an asperity
height to s being greater than h by an amount hL is

P�hL� �
Z `

h1hL

ds f�s� , (10)

whose mean height and hence contact area is propor-
tional to

P�hL�21
Z `

h1hL

ds f�s� �s 2 h� . (11)

These two quantities are plotted in Fig. 2. It is seen that
even for hL only equal to 1�2, Eq. (11) remains larger than
the square root of Eq. (10).

We have argued that the asperities are essentially uncor-
related. They will still not produce static friction, unless
they exhibit multistability [9,16]. The condition for multi-
stability to occur at an interface [9], namely that the force
constant due to the asperity contact potential be larger than
that due to the elasticity of the asperity (�E0a), however,
is satisfied, as noted earlier.

In conclusion, when one considers atomically smooth
surfaces, arguments based on Larkin domains indicate that
the disorder at an interface between two nonmetallic elas-
tic solids in contact will not result in static friction. When
one applies such arguments to the distribution of asperi-
ties that occur on multimicron length scales, however, one
finds that the asperities are virtually always in the “strong
pinning regime,” in which the Larkin domains are com-
parable in size to a single asperity. This accounts for the
fact that there is almost always static friction. Muser and
Robbins’ idea [2,3], however, is not invalidated by this
argument. Their result will still apply for a smooth crys-
talline interface. It will also apply in the present context
to the contact region between two asperities, implying that
for a clean interface the shear force between contacting
asperities is proportional to the square root of the contact
area. The GW model predicts for this case that the average
force of friction is proportional to the 0.8 power of the load
[11,12] and is considerably smaller for clean than for dirty
interfaces.
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