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Green’s Function Probe of a Static Granular Piling
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We present an experiment which aims to investigate the mechanical properties of a static granular
assembly. The piling is a horizontal 3D granular layer confined in a box. We apply a localized extra
force at the surface and the spatial distribution of stresses at the bottom is obtained (the mechanical
Green’s function). For different types of granular media, we observe a linear pressure response whose
profile shows one peak centered at the vertical of the point of application. The peak’s width increases
linearly with increasing depth. This Green’s function seems to be in at least qualitative agreement with
predictions of elastic theory.
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Understanding the exact mechanical status of static or
quasistatic granular assemblies is still an open and de-
bated issue [1,2]. So far, there is no consensus on how
to express correctly the stress distributions in a granular
piling under various boundary conditions. Traditional ap-
proaches of soil mechanics typically use elastoplastic mod-
eling for granular materials [3] and constitutive relations
are obtained empirically from standard triaxial tests. In this
picture, for small deformations, an elasticlike behavior is
assumed and a set of elliptic partial differential equations
(PDE) is then used to get the stress/strain distributions. For
larger strains, the Coulomb plasticity theory is adapted to
model granular flows, which involves hyperbolic (propaga-
tive) PDE’s in regions experiencing yield [4]. At the granu-
lar scale, several recent experiments and simulations have
evidenced the presence of a rather large distribution of con-
tact forces [5] between the grains as well as force chains
[6,7] spanning a volume of 10 to 15 grain sizes. Hence,
it is clear that a rigorous passage from a microscopic to
a macroscopic mechanical description that would include
this mesoscopic disorder is an arduous task and a chal-
lenging problem of statistical physics. Consequently, these
studies have triggered alternative theoretical approaches.
One of them is based on a scalar stochastic modeling [8]
for the contact force redistributions. In the large scale limit,
this vision provides a diffusivelike picture (parabolic equa-
tion) for the stress transmission properties. Another ap-
proach incorporates the vectorial and propagative character
of the contact forces between the grains [9–11]. This pic-
ture, when extended to the continuum limit, predicts simple
relations between the components of the stress tensor and
implies hyperbolic (i.e., propagative) PDE’s for the stress
fields [9,12]. A recent framework bridges the two last ap-
proaches [13]. From a fundamental point of view, there is
no reason why a hyperbolic equation would be expected in
general besides in the special case of isostatic (i.e., mini-
mally connected) packing as it was initially suggested by
Edwards [14] and rigorously derived by Moukarzel [15]
and Tkachenko et al. [16]. But this applies essentially to
frictionless and infinitely rigid grains and nothing is known
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in general for granular assemblies with friction. Several re-
producible experiments were recently performed on a sand
heap (see [17], and references therein) and on a granular
column [18,19]. It was shown that a hyperbolic modeling
(for example, the oriented stress linearity model [12]) is in-
deed able to reproduce some of the observed phenomenol-
ogy. But it is worth noting that the parameters entering in
these hyperbolic models are so far phenomenological con-
stants, calculated a posteriori and therefore, do not pro-
vide us with really predictive statements. Furthermore, the
agreement between the available experiments and the hy-
perbolic models does not rule out the pertinence of elliptic
models [20,21].

Here we present an experiment probing the response
of static granular assemblies to a local stress perturbation
(a Green’s function). This is probably the most basic ex-
periment allowing a precise discrimination between the
different approaches and which should reveal the real me-
chanical nature of static granular assemblies [2]. We op-
erate on a horizontal 3D granular assembly confined in a
box and the spatial distribution of stresses at the bottom is
monitored which provides an important piece of evidence
in order to inform this currently debated issue.

Already at the most basic level, measuring meaning-
ful stresses in granular assemblies is a nontrivial question.
Generally, experimentalists measure stresses by calibration
of devices that are deformed or displaced as a result of a
local force distribution on the probe surface. They are con-
fronted to three fundamental problems: (i) the response of
the probe depends on the history of the preparation as evi-
denced on the sand heap [17] (which might be a physically
relevant issue), (ii) the probe surface has a limited number
of contacts with the granular medium which is at the origin
of an inherent fluctuations scale (whose importance should
decrease when the probe size increases), and (iii) the physi-
cal characteristics of the probe itself may have an influence
on the measurements.

In this last situation, large deformations of the device
may change drastically the local force distribution creat-
ing arching effects around the probe. The stress probe we
© 2001 The American Physical Society
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use here is made of a thin metallic membrane of thickness
e � 100 mm welded on a cylinder. The deformation of
the membrane (less than 1 mm) is monitored using a sen-
sitive capacitive technique. To avoid the formation of a
vault around the probe and break the history dependence
when building the sand layer, the pile is slightly vibrated
after each height increase and the sand is randomly poured
by hand layer by layer. This procedure produces some
fluctuations from one step to the other but in the average,
we checked that, locally, the hydrostatic pressure relation
P � rgh is well recovered (with a precision of 5%, which
is the typical uncertainty on the packing fraction determi-
nation). For all the experiments we describe here, we use
this procedure to prepare the sand pile.

Probing the response of a granular static piling to a lo-
calized perturbation is a priori a difficult issue. It is of
common experience that it is quite easy to drill a hole in
a sandy surface when pushing it weakly with the tip of
a finger. Therefore, since the perturbing stress must not
create plastic reorganization of the grains, only weak per-
turbations must be applied. Consequently, the detection of
the response signal is likely to be rapidly hidden within
the noise when depth increases. The typical pressure we
apply at the surface of the pile is achieved by a piston P
(see Fig. 1) of mass M � 5g with a surface A � 1 cm2

(5.102 Pa). In order to increase the signal�noise ratio, we
use a lock-in detection technique. More precisely, a local
stress modulation is achieved using a periodic magnetic
field created by an electric current in a coil surrounding
the piston (see C in Fig. 1). In the piston, a permanent
magnet is inserted and the coil current is driven by a low

FIG. 1. Sketch of the experimental display: G, low frequency
generator; C, electrical coil; P, piston; P1, stress probe; P2,
displacement probe; L, lock-in amplifier (see text for a detailed
description). Inset: Test of the response linearity for three in-
dependent experiments on the same probe P2. The axes (stress
versus applied force) are labeled in arbitrary units.
frequency generator (G). Therefore, the modulation of the
magnetic field in the coil creates a force modulation on
the piston. The signal of the stress probe P1 at the bot-
tom of the piling is then directed to the lock-in amplifier
L synchronized by the generator exciting the source. Note
that a sensitive displacement probe P2 monitors the piston
position to check that no plastic yield occurs during the
data collection. The relative horizontal position x between
the piston and the probe P1 is varied. We operate in the
low frequency limit such that we are basically probing the
static properties of the granular piling. The applied extra
modulated force is driven at f � v�2p � 80 Hz and we
checked that the exact choice of this frequency modulation
does not matter in this limit (between 10 and 120 Hz). We
also verified that within a reasonable time scale (several
tenths of minutes), we do not observe slow variation of the
response. Because of the finite sizes of the piston and of
the probe, the signal hence obtained is the convolution of
the mechanical response function (the Green’s function)
by the width of the source and the width of the probe. We
measured the intrinsic experimental width W0 � 10 mm
and we found the convolution effects to be negligible as
soon as h . 3 cm (corresponding to 3 times the probe
diameter).

Here, we report experiments on their granular media
with different size d and shape. We use d � 1 mm “aquar-
ium sand” and d � 300 mm “Fontainebleau sand.” The
grain shape is rather rough and the size polydispersity is
around 50%. We also use monodisperse glass beads (di-
ameter d � 1.5 mm). We tested that, in the limit where no
“sinking” of the piston inside the pile is observed, the re-
sponse is linear in the value of the imposed stress. We also
found that the value of the slope relating the applied force
to the observed stress may depend strongly on granular
configurations around the probe. This “realization depen-
dence” causes difficulties to calibrate precisely the probe
at 80 Hz on a granular column. This is evidenced in the
inset of Fig. 1 where we display the stress measurement
for three different piles obtained in the same conditions.
The response amplitude after detection by the lock-in am-
plifier at x � 0 is plotted as a function of the force modu-
lation amplitude F. Note that the force values stem from a
calibration on a static water column and not on the granu-
lar pile response at 80 Hz. The frequency of the signal is
small enough such that we have no significant phase shift
between the force and the detected stress. Moving the point
of application of the force, we change the horizontal dis-
tance x between the piston and the probe and plot the pres-
sure profile szz�x� for a given depth h of sand.

The response function P�x� shows one single peak cen-
tered at the vertical of the point of application of the force;
we did not observe the two separated bumps as predicted by
hyperbolic models [2,10], even when increasing the depth
up to 10 cm which corresponds to the limit of our detection
possibilities. In Fig. 2a, we display the response functions
rescaled by an amount P� so that they present the same
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FIG. 2. Horizontal stress distribution in response to a localized
solicitation (Green’s function). (a) Green’s function P�x� �
szz�x��P� measured at three different depths for d � 1 mm
sand. See text for definition of the rescaling factor P�. (b) Half
amplitude width W of the response function as a function of
depth h for three different granular materials (see legend). The
straight line is the best linear fit: W � 0.94h.

area under the curve (i.e., constant applied force). Impor-
tantly, we checked that for three different probes situated
at three difference places on the bottom plate, this pro-
cedure provides us with the same stress distribution. In
Fig. 2a, we display three response functions P�x� obtained
at different depths h for the d � 1 mm sand. We find that
for all granular media studied, the width at half amplitude
w increases linearly when increasing the depth (whenever
h . W0). The slope is independent of the material used
(see Fig. 2b). This is in qualitative agreement with the
prediction of elastic theory. Here we provide a compari-
son with the only known exact solution in 3D obtained
for an infinite half-space as computed by Boussinesq and
Cerruti last century [22]:

szz �
23F
2p

z3

�x2 1 z2�5�2 ,

where F is the applied force. In Fig. 3 we plot the response
functions at different depths h such that the response P�x�
is rescaled by z2 and the horizontal axis is x� � x�h. We
see that for all the granular material tested, the curves are
collapsing onto the same function. The response is clearly
sharper than the elastic Lorentzian prediction obtained for
3310
FIG. 3. Rescaled Green’s function h2P�x� as a function of the
rescaled horizontal axis x�h, for different depths and differ-
ent types of granular materials. Aquarium sand: d � 300 mm
[h � 30 mm ���, 62 mm ���, 79 mm ���, 100 mm ���];
Fontainebleau sand: d � 1 mm [h � 19 mm ���, 48 mm ���,
68 mm ���, 97 mm �	�]; glass beads: d � 1 mm [h � 28 mm
���, 48 mm �3�]. The straight line is the theoretical response of
an elastic infinite half-space.

a semi-infinite medium. We get w�h � 0.94 6 0.05 in-
stead of w�h � 1.13 . . . (i.e., 20% sharper). One problem
here is to account correctly for the bottom boundary con-
dition which is not a trivial issue since many choices can
be done and it requires an adapted elastic code. Neverthe-
less, we are aware of an analytical calculation performed
on the same problem in 2D and in 3D by Claudin [23].
Rough and smooth boundary conditions are used. Both
calculations show a clear sharpening of the response of
about 20% in 2D and 6% in 3D when compared to the
exact semi-infinite solution in 2D. Thus the issue is subtle
and requires precise finite element elastic calculations. We
leave the discussion for future investigations. Moreover,
it is important to notice that the linear broadening is not
consistent with any leading parabolic behavior [8,13] on
large scales where broadening increasing as a square root
of depth would be expected. Therefore, our results clearly
contradict the claim of generic parabolic behavior ex-
tracted from recent experiments [24] done on a quite spe-
cific granular assembly and obtained at a very small scale.

In conclusion, we present the first experimental determi-
nation of the horizontal stress distribution in response to a
localized stress solicitation (i.e., the mechanical response
function or Green’s function) in a granular piling. The
stress solicitations are made along the vertical axis and the
spatial distribution of pressures is measured at the bottom
of the pile. The different pilings tested were very disor-
dered in terms of size, polydispersity, and friction between
the grains. The piling procedure we use avoids, as much as
possible, preparation memory effects. In such a case, the
Green’s function is consistent with predictions of elasticity
since it does not exhibit the two side bumps as the hyper-
bolic modeling would. We also find a linear dependence
of the half-height enlargement width depth. This last result
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rules out parabolic modeling of disordered granular assem-
blies (on a large scale, at least). Nevertheless, we do not
find so far a complete quantitative agreement with the exact
result of isotropic elasticity in an infinite half-space. An
open question is still to understand how and whether this
difference could be captured when considering explicitly
boundary conditions imposed by the bottom plate and/or
the explicit consideration of elastic anisotropy. This issue
is left to a future report. In fact, recent experiments on bi-
dimensional assemblies have shown that a change of shape
of the response function can be related to an increase of
packing disorder [25]. Interestingly this effect can be re-
produced with hyperbolic models when strong disorder is
included (see recent work by Bouchaud et al. [26]). Con-
sequently, the goal of further experiments is to study in de-
tail the influence of disorder and texture on the mechanical
response function.
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