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Self-Focusing and Defocusing in Waveguide Arrays
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We show that two regimes of diffraction exist in arrays of waveguides, depending upon the input
conditions. At higher powers, normal diffraction leads to self-focusing and to the formation of bright
solitons through the nonlinear Kerr effect. By slightly changing the input conditions, light experiences
anomalous diffraction and is nonlinearly defocused. For the first time, self-focusing and self-defocusing
have been achieved for the same medium, structure, and wavelength.
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Analogies between dispersion and diffraction are often
used in optical science. Although they are two distinct
phenomena, they share several common properties. Both
lead to the expansion of an initial light profile, the first
in time and the second in space. However, while disper-
sion is material dependent and is absent in vacuum, diffrac-
tion is primarily a geometrical phenomenon and it is only
slightly affected by the propagation medium through its re-
fractive index.

Depending on the medium, dispersion can be normal
or anomalous, while diffraction is always equivalent
to anomalous dispersion. This fact has important con-
sequences, particularly to nonlinear propagation. For
example, bright and dark temporal solitons have been
generated in media with positive Kerr nonlinearities
[1–3], while no dark spatial solitons have been reported in
such media.

The similarities between dispersion and diffraction stem
from the way in which different components of light gather
optical phase as they propagate. Consider a generic tem-
poral pulse, represented in terms of its spectral frequency
components. The phase accumulated by a frequency com-
ponent v after propagating a distance L is k�v�L, where
k�v� � 2p�l � n�v�v�c. Here l is the wavelength,
n is the refractive index, and c is the speed of light in
vacuum. A pulse composed of a narrow group of fre-
quencies around v travels at the group velocity yg, where
1�yg � k0 � ≠k�≠v. The distortion and broadening of
pulses result from the fact that the group velocity is not
uniform for all frequencies composing the pulse. The
effect of group velocity dispersion (GVD) is related to
k00 � ≠2k�≠v2 which describes the rate of pulse broad-
ening. We note that when n�v� is constant, as in vacuum,
no GVD is present �k00 � 0�. In most optical materials
(e.g., glasses in the visible spectrum), dispersion is nor-
mal, k00�v� . 0, while anomalous dispersion, k00�v� , 0,
is obtained at longer wavelengths in the infrared range.

We will now trace, using the considerations above, a par-
allel between diffraction and dispersion. For simplicity, we
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will consider a beam which is free to expand (diffract) only
along one transverse direction bx. The case of diffraction
along two dimensions is a simple extension. Let us con-
sider a cross section of a monochromatic beam along the
x axis at z � 0. In the same way as a pulse was expressed
in terms of its temporal frequencies through Fourier se-
ries, the spatial profile of the beam can be decomposed
into spatial frequencies kx , i.e., of plane waves with con-
stant wave number k but different propagation directions.
In a homogeneous medium the components of k, kx and
kz , are related by the condition k2 � k2

x 1 k2
z or, equiva-

lently, kz �
p

k2 2 k2
x [Fig. 1(a)].

When an optical field propagates over a distance L, each
transverse component of the frequency kx gains a phase
kz�kx� 3 L. The initial profile of the beam along the
bx direction broadens as the beam propagates due to the
phase accumulated by the different spatial frequencies. In

FIG. 1. Spatial diffraction curves showing phase vs spatial fre-
quency for (a) continuous and (b) discrete models. The arrows
mark the largest possible angle of energy propagation for each
model. An inversion of curvature (beyond kxd � 6p�2) leads
to anomalous diffraction only in the discrete case.
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analogy with temporal dispersion, the spatial broadening
of the beam is related to k00

s � ≠2kz�≠k2
x . In homogeneous

media, k00
s is always negative, implying that diffraction in

such media is equivalent to anomalous dispersion.
Let us now consider the spatial broadening of a beam in

a discrete system, such as an infinite array of weakly cou-
pled identical waveguides. In this system all the guides
support the same optical mode, and energy can be ex-
changed between neighboring guides through the overlap
of their modes. The optical coupled-mode set of equations
for the electrical field in the nth waveguide is [4,5]

dEn

dz
� ikwgEn 1 iC�En21 1 En11� 1 igjEnj

2En .

(1)

In Eq. (1), kwg is the propagation constant of the wave-
guide, and C is the coupling constant between adjacent
waveguides, which is proportional to an overlap integral of
the two modes of such waveguides. The last term describes
the nonlinear Kerr effect, with a coefficient g. When a
single, or few, input guides are excited with low optical
power, light spreads over more and more waveguides as it
propagates through “discrete diffraction.” Similar dynami-
cal properties are shared by many other discrete systems in
nature, e.g., molecular chains, crystal lattices or two- and
three-dimensional photonic crystals [6–9].

In analogy with dispersion and continuous diffraction,
discrete diffraction is best formulated in terms of plane
wave excitations of the infinite array. The diffraction rela-
tion [10] can be deduced from the coupled-mode equation
(1), which is the optical equivalent of the continuous model
of tight binding of electrons in a one-dimensional atomic
lattice [11]. As in solid-state physics, similar qualitative
results can be derived from the Floquet-Bloch wave theory
for a weak periodic potential [12]. The linear diffraction
relation between kz and kx is kz � kwg 1 2C cos�kxd�,
where d is the distance between the waveguide centers
[Fig. 1(b)]. The periodic diffraction relation reflects the
fact that once a plane wave is tilted by an angle of l�d,
or integer multiples, adjacent waveguides are excited in
phase, just as the excitation of a wave normal to the array.
The periodic dispersion relation has a significant effect on
diffraction. Now k00

s � 22Cd2 cos�kxd�, and the diffrac-
tion sign can be controlled. In particular, k00

s is positive
(i.e., of the opposite sign to that normally experienced in
nature) in the range p�2 , jkxdj < p , where the diffrac-
tion is anomalous. Diffraction vanishes at the two points
kx � 6p�2d. Clearly, the sign and value of diffraction
can be chosen by launching light at a particular angle. The
ability to control diffraction was recently shown in engi-
neered periodical arrays of waveguides [10].

For nonlinear propagation, the implications are even
more interesting. Dispersion always causes the spreading
of light pulses, and diffraction broadens light beams, re-
gardless of their sign. However, it is well known that a
positive (focusing) Kerr nonlinearity may counterbalance
and even cancel the effect of anomalous dispersion to gen-
erate a stable nondispersing bright temporal soliton. In
the normal dispersion regime it is possible to launch dark
solitons, which have the form of a stable dip in a uniform
background of light [13].

Because of the unique sign of diffraction, dark spatial
solitons have been generated only in materials with a slow
negative nonlinearity [14]. Here we demonstrate that the
condition necessary to observe the nonlinear consequences
of anomalous diffraction can be created in an array of
waveguides. When the light is injected normal to the in-
put facet �kxd � 0�, the diffraction is normal and the array
exhibits discrete self-focusing that leads eventually to the
formation of a bright discrete soliton [5,15]. By slightly

FIG. 2. Experimental results showing both nonlinear self-
focusing and self-defocusing in an array of waveguides, for
slightly different initial conditions. (a) The input beam,
�35 mm wide at FWHM. (b) Light distribution at the output
facet for normal dispersion in the linear regime. The beam
slightly broadens through discrete diffraction. (c) At high power
�Ipeak � 150 W�, the field shrinks and evolves into a discrete
bright soliton. (d) For an anomalous dispersion condition, when
the beam is injected at an angle of 2.6± 6 0.4± inside the array,
it broadens slightly as in (b). Note the dark lines between the
optical modes resulting from the p-phase flips between adjacent
waveguides. (e) When the power is increased �Ipeak � 100 W�,
the distribution broadens significantly due to self-defocusing.
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tilting the input beam, we can induce the phase shift be-
tween adjacent waveguides [16] that is required in order
to generate anomalous diffraction and nonlinear discrete
self-defocusing at higher powers. Under such conditions,
an infinite beam with a phase flip across its center will
evolve into a stable dark soliton, even in a medium with
a positive Kerr nonlinearity, as proposed by Kivshar and
co-workers [17,18].

The light source in the experiments was a mode-locked
optical parametric oscillator emitting 100 fs pulses tuned
to 1.53 mm, which is slightly below the half-bandgap en-
ergy of GaAs. The nonlinearity of AlGaAs in this wave-
length range is primarily due to instantaneous nonresonant
electronic interaction, and it can be described well as a
pure positive Kerr nonlinearity. The experimental setup is
similar to the one described in Refs. [15,16].

The first set of results, presented in Fig. 2, depicts the
nonlinear behavior in regions of normal and anomalous
diffraction. The sample was a 6-mm-long array (corre-
sponding to about three coupling lengths) consisting of
61 rib waveguides, 2.5 mm wide, uniformly spaced by
2.5 mm and etched 1.6 mm deep on top of a slab wave-
guide [15]. Figure 2(a) shows the input beam, initially
35 mm wide, which is injected into the array. Figures
2(b)–2(e) display images of the light distribution at the
output facet. In particular, Figs. 2(b) and 2(c) are for ex-
citation perpendicular to the array’s input facet �kxd � 0�,
where diffraction is normal. Figure 2(b) shows the ex-
pansion of the beam at low power, while Fig. 2(c) illus-
trates the effect of self-focusing resulting in the formation
of a bright discrete soliton [15]. The conditions of anoma-
lous diffraction were achieved by tilting the input beam by
about 3±. At this input condition, light in adjacent wave-

FIG. 3. Comparison between cross sections of the experi-
mental results of Fig. 2 (continuous line) and numerical
solutions of coupled-mode theory (solid circles, each represents
the power in a single waveguide). (a),(b) Normal discrete
diffraction condition, low and high power, respectively. (c),(d)
Anomalous diffraction condition, low and high power, respec-
tively. Note the difference between nonlinear focusing (b) and
defocusing (d).
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guides is out of phase, as confirmed by the pronounced
dark dips between adjacent waveguide modes. At low
power, the beam still broadens [Fig. 2(d)]. When the light
intensity is increased [Fig. 2(e)], the output field does not
focus but rather spreads and becomes significantly wider,
indicating nonlinear self-defocusing even though the non-
linearity is positive.

We have compared our experimental results with the
numerical solutions [19] of the coupled mode equation (1).
In Fig. 3 we show measured horizontal cross-sections
through the four experimental patterns of Figs. 2(b)–2(e),
which are represented by the solid lines in Figs. 3(a)–3(d).
The simulation results are given by the solid circles in
Fig. 3. Each circle represents the intensity jEnj

2 in
the corresponding waveguide. These simulated values

FIG. 4. Generation of a dark discrete solitary wave in the
case of anomalous diffraction. (a) The input profile, �40 mm
wide at FWHM. (b) For normal diffraction at low power, a
notch is visible in the output profile. The beam evolves into
two repulsive bright solitons when the intensity is increased
[(c) Ipeak � 250 W]. For anomalous diffraction (beam tilt �
2.0± 6 0.4± in this array), the “dark” notch initially present in
the output profile [(d) linear case] slightly narrows and becomes
more marked when the power is increased [(e) Ipeak � 250 W].
As a result of anomalous diffraction, the dark localization is
self-sustained in a defocusing bright background, and does not
disappear when the beam broadens nonlinearly.
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correspond quite well with the peaks of the intensity
distribution corresponding to the individual waveguides.

Subsequently, we tested a sample consisting of a 4-
mm-long array (about two coupling lengths) of 61 wave-
guides, 3 mm wide and separated by the same distance.
By adding a suitable phase mask just before the input, we
created a p-phase shift in the center of the beam, cor-
responding to a sharp dark strip [Fig. 4(a)]. For normal
diffraction, the dark notch was still observed at low powers
in the output profile [Fig. 4(b)], but the beam evolved into
two discrete bright solitons when the power was increased
[Fig. 4(c)]. The same experiment was subsequently re-
peated in conditions of anomalous diffraction. The dark
notch was still visible in the output profile of the array,
both at low [Fig. 4(d)] and at high [Fig. 4(e)] powers, when
it slightly narrows but becomes more marked. However,
we note that self-defocusing causes an almost symmetric
spreading of the beam, while remarkably preserving the
narrow central dark region. Even if the strict conditions
to observe dark solitons were not met, as higher powers
would be required to induce nonlinear behavior with a sig-
nificantly broader beam, the characteristic behavior of a
dark excitation for the two diffraction regimes is clearly
seen in the figures.

In conclusion, we investigated the nonlinear diffractive
properties of a waveguide array. When the beam was in-
jected normal to the input facet, we observed nonlinear
self-focusing and the formation of a bright spatial soli-
ton. However, by a slight variation of the input angle,
we achieved the condition of anomalous diffraction and
observed self-defocusing. Taking advantage of these fea-
tures, we used a phase mask to generate a dark solitary
wave in the presence of a positive, ultrafast Kerr nonlin-
earity. We believe that these results could have important
consequences in the fabrication of optoelectronic circuits,
where nonlinear self-focusing poses a serious limitation
on the performances of many devices. The properties ob-
served are quite general, and can be used to suggest novel
behavior in discrete systems of a rather different nature.
In particular, it is possible to imagine photonic crystal
structures in which diffraction strongly depends on the
propagation direction, to the point that two different or-
thogonal directions could support nonlinear self-focusing
and defocusing simultaneously.
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