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First Experimental Test of a Trace Formula for Billiard Systems Showing Mixed Dynamics

C. Dembowski,! H.-D. Griif,! A. Heine,' T. Hesse,2 H. Rehfeld,! and A. Richter!

Unstitut fiir Kernphysik, Technische Universitit Darmstadt, D-64289 Darmstadt, Germany
2Abteilung Theoretische Physik, Universitit Ulm, D-89069 Ulm, Germany
(Received 17 August 2000)

In general, trace formulas relate the density of states for a given quantum mechanical system to the
properties of the periodic orbits of its classical counterpart. Here we report for the first time on a semi-
classical description of microwave spectra taken from superconducting billiards of the Limacon family
showing mixed dynamics in terms of a generalized trace formula derived by Ullmo et al. [Phys. Rev. E
54, 136 (1996)]. This expression not only describes mixed-typed behavior but also the limiting cases of
fully regular and fully chaotic systems and thus presents a continuous interpolation between the Berry-

Tabor and Gutzwiller formulas.
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The semiclassical relationship between the density of
states of a chaotic quantum system and the properties of
the periodic orbits (POs) of the corresponding classical
system has been known for nearly 30 years [1,2]. The
so-called Gutzwiller trace formula expresses the density
of states by a weighted sum over all individual classical
POs. Integrable, i.e., regular, systems can be described by
Einstein-Brillouin-Keller quantization [3]. A trace formula
for such systems was first derived by Gutzwiller [4] and
later in a different way by Berry and Tabor [5]. Besides
these two limiting cases of chaotic and regular dynamics,
systems with intermediate, mixed behavior have attracted
more and more attention in recent years.

A very popular class of systems for these studies is
Euclidean billiards, which are classically defined by the
free motion of a particle inside a domain with elastic re-
flections at the boundary. The corresponding quantum bil-
liard is described by the stationary Schrédinger equation
with Dirichlet boundary conditions [6]. Two-dimensional
billiards can be experimentally studied by using flat mi-
crowave resonators [7—9]. The aim of this Letter is to
present for the first time an experimental test of a recently
proposed trace formula by Ullmo et al. [10] for systems
with mixed dynamics employing a set of such flat mi-
crowave billiards of the so-called Limacon family [11].

This Letter is organized as follows: First, we recall the
salient features of the trace formula for systems showing
mixed behavior. Second, we follow this with a short de-
scription of the experimental techniques using supercon-
ducting microwave billiards which yield spectra of high
resolution. Third, we present the application of the trace
formula to the experimental data.

For the following brief discussion of the trace formula
for mixed systems we restrict ourselves to systems with
2 degrees of freedom. We start with an integrable sys-
tem, where the contribution of POs with topology M =
(M, M) specifying the individual winding number of the
PO on the tori to the density of states is given by the
Berry-Tabor formula [5]
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with T being the period of the PO, gF is the curvature of
the line of constant energy H(I{,I;) = E, S is the action
of the PO, and 7 is its Maslov index.

By moving from the regular to the near-integrable case,
Ozorio de Almeida [12] added a small perturbation € H
to an integrable system, described by the Hamiltonian Hy:
H(I,¢) = Hy) + eH (I, ¢), with (I, ¢) denoting the
action-angle variables. This small perturbation changes the
density of states p,BT of the regular system in such a way
that a first order correction to the action has to be added.
This means that the resonant tori, on which the POs of
the regular system exist, are being destroyed, and only two
POs per torus will survive: one stable (s) and one unstable
(u) PO (according to the Poincaré-Birkhoff theorem). Thus
for near-integrable systems, Ozorio de Almeida found a
modified Berry-Tabor expression for the density of states

p(S) = pETio(AS/H), )

where AS is the difference of the action of the stable and
unstable PO.

In a typical case the unperturbed Hamiltonian Hy and the
perturbation € H{ in action-angle variables are not known.
Thus, a generalization of formulas (1) and (2) and also a
method to evaluate the parameters entering these formulas
are needed.

Ullmo et al. [10] started their evaluation of a trace for-
mula for mixed systems also with the Berry-Tabor expres-
sion. However, they did not use the propagator formalism
of [5], but instead the energy dependent Green’s function
and also the result of Ozorio de Almeida [12]. However,
they went one step farther. Instead of truncating the
Fourier expansion of the corrected actions, which results
in the damping Bessel term in Eq. (2), they mapped
the problem onto the pendulum. They introduced an

action which is a composition of the mean action §
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and the difference action AS of the two POs (stable and
unstable), AS = (S, — S;)/2and S = (S, + S,)/2. The
actions S, and S and also the monodromy matrices M,
and M; of the two POs can be easily computed. En-
tering these relations into the integral which describes

the dephasing of the PO contribution of the family M
under a perturbation (see [10]), one is able to modify
the expression of the density of states for the integrable
case [Eq. (1)]. This yields the following expression for
the density of states for each pair, the stable and the

| unstable PO:

) = —elenl S - 07 - ) [TLto) — iano) + iar[40) + S o) - o1 ]

with s = AS/h being the normalized correction to the |

action, T is the averaged period (half of the sum of two
periods), and AT is their difference. The quantities Jo(s),
Ji(s), and J,(s) are the standard Bessel functions. The
value 4 is the ratio of the determinants of the monodromy
matrices of the stable and the unstable PO. For @ — 0,
one obtains the result of Ozorio de Almeida [Eq. (2)]. The
Maslov index is denoted by 7, and for the evaluation of
gg see, e.g., [13].

To apply Eq. (3) to the billiard problem below, small
replacements are necessary: The action is given by § =
hikl, with k being the wave number and / the length of the
PO. The period of the PO can be expressed by its length
and the term MS g# can be evaluated by using expressions
given in [10].

From Eq. (3) the two limiting cases, the Berry-Tabor
result for integrable systems and the Gutzwiller result for
chaotic systems, are easily reproduced. One obtains the
first one for AS — 0 [Eq. (1)], while the other results
from the asymptotic expression for the Bessel functions.
Gutzwiller’s trace formula reads as follows:
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where M is the monodromy matrix and 7 is the Maslov
index of the PO (see [1,2]). Ullmo et al. tested their trace
formula numerically by applying it to a quartic oscillator
for which they have calculated the first 12 000 eigenvalues.
They found good agreement between the simulated quan-
tum spectrum and its reconstruction with Eq. (3).

For a precise test of the trace formula for mixed sys-
tems [Eq. (3)] an accurate measurement of the resonances
of the investigated microwave billiards is necessary. There-
fore we studied experimentally a one-parameter family of
superconducting two-dimensional microwave resonators.
In Fig. 1 the shapes of the measured billiards are shown.
They all belong to the family of Limacon billiards, which
have been numerically studied in [11]. Their boundary is
defined as the quadratic conformal mapping of the unit
disk onto the complex w plane: w = z + Az?, where
A € [0,1/2] controls the chaoticity of the system. These
billiards are also called Pascalian snails, their shape was al-
ready mentioned by the famous German painter, A. Diirer,
in 1525 [14].

3)

We have investigated in detail four billiards of different
chaoticity with parameters A = 0, A = 0.125, A = 0.15,
and A = 0.3. All billiards, except the first one, are desym-
metrized. For A = 0 we have a circle, which is known
to be integrable, i.e., regular. Investigations of the classi-
cal Poincaré surface of section of the other configurations
have shown, that the fraction of the chaotic phase space
is 55% (A = 0.125), 66% (A = 0.15), and nearly 100%
(A = 0.3). This is supported by the statistical analysis
(nearest neighbor spacing distribution and Dyson-Mehta
statistics) of the microwave spectra [9].

The measurements were carried out in a liquid helium
bath cryostat at T = 4.2 K [9]. The billiards were ex-
cited with frequencies up to 20 GHz, and a total number
of more than 1000 resonances for each billiard (about 660
resonances for the circular billiard) were observed. The
high quality factor of 10°—107 together with the very good
signal-to-noise ratio of up to 70 dB of the superconducting
niobium cavities made it easy to separate the resonances
from each other, especially in the case of the circular bil-
liard with nearly twofold degenerate states. In Fig. 2 a
part of the measured spectrum for the A = 0.15 billiard is
shown. The obtained eigenvalue sequences {ki, k>, ..., k,}
form the basis for the following test of the trace formula
for mixed systems.

The effect of the classical POs in the quantum mechani-
cal system is seen in the Fourier transform of the fluctuat-
ing part of the level density

Kinax
0 = [Tk Tpw - 201 )
where p(k) is the measured level density of the system,
p V¥l (k) is its smooth part, and [kmin, kmax ] is the wave
number interval in which the data were taken [15] (see
Fig. 3). Note, that Egs. (1), (3), and (4) already describe
the fluctuating part of the level density.
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FIG. 1. Shapes of the investigated billiards of the Limagon
family. All billiards are desymmetrized, except the first one.
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FIG. 2. Part of a transmission spectra of the superconducting
microwave billiard with A = 0.15 at T = 4.2 K.

By applying the trace formula Eq. (3) to the investigated
systems, we restrict ourselves to the first POs up to a length
of 1.4 m (see Fig. 3). Around this length (depending on
each individual system) the family of the so-called whis-
pering gallery orbits occurs. These orbits are character-
ized by twice the length of the outer circumference around
which they are creeping. Thus the number of reflections go
to infinity, leading to a broad peak in the Fourier spectrum
caused by a large number of different POs, with more or
less the same length, which interfere with each other. This
makes a correct reconstruction of the measured spectrum
with the help of Eq. (3), at this length very difficult.
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FIG. 3. Comparison between the measurement (solid lines)

and the reconstruction (dashed lines) of length spectra with the
help of the trace formula given by Egs. (1), (3), and (4). The
insets for the A = 0.125 and A = 0.15 billiards show a magni-
fication of the first periodic orbit at [ = 0.47 m.
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The reconstruction of the spectrum of the circular bil-
liard was done with the help of the Berry-Tabor formalism,
one limiting case of Eq. (3), using a symbolic code which
easily determines all POs [16]. For the three other billiards
we calculated the properties of each PO (length, number
of reflections, curvature of the boundary at the reflection
point, and Maslov index) numerically. The so-found char-
acteristic values for each PO form the basis for the recon-
struction of the experimental spectra on the theoretical side.

A comparison between the experimental Fourier spec-
trum and its numerical reconstruction for the four inves-
tigated systems is presented in Fig. 3. For the circle the
reconstruction is in very good agreement with the mea-
surement. The reconstruction for the two billiards belong-
ing to the mixed regime (A = 0.125 and A = 0.15 billiard)
is also very satisfactory for the shortest POs, whereas for
the following POs with lengths / = 1.3 m small devia-
tions become visible. These deviations do not occur in the
positions of the POs but in the height of the reconstructed
peaks. The same situation is found for the chaotic A = 0.3
billiard, where the predictions from Gutzwiller’s trace for-
mula were compared to the data.

In Fig. 4 the real and imaginary parts of the experimen-
tal and theoretical Fourier transformed fluctuating parts of
the level density for the A = 0.125 billiard around the peri-
odic orbit pair at 1.21 m/1.22 m are compared. The theo-
retical reconstruction was calculated by using Eq. (3). The
figure clearly displays that, besides the theoretical posi-
tions, the phases of the POs are also in good agreement
with the experimental data.

The small deviations we found for the billiard systems
with mixed dynamics, i.e., A = 0.125 and 0.15, cannot
be explained by the fact that we used real systems
compared to the ideal systems we used for the recon-
struction in Eq. (3). Numerical simulations [17] for those
billiards have shown that our measured eigenfrequency
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FIG. 4. Real and imaginary parts of the length spectrum of the
A = 0.125 billiard. The measured spectrum is drawn as solid
lines and the reconstruction as dashed lines. The peaks belong

to the periodic orbit pair at 1.21 m/1.22 m.
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spectra are in very good agreement with the simulated
eigenvalues. The most likely explanation for the devi-
ations between theory and experiment is that Eq. (3)
has been derived for the case of small perturbations
of a regular system, i.e., for the near-integrable case,
while the two investigated billiards already constitute
highly mixed systems. Furthermore with only about
1000 measured eigenvalues we are probably still away
from the true semiclassical regime. However, the results
for the mixed systems obtained with the trace formula
of Ullmo et al. is much more satisfying than using
the Gutzwiller trace formula straightforwardly without
taking the Poincaré-Birkhoff theorem into account. Equa-
tion (4) predicts the positions of the peaks in the Fourier
spectrum correctly but fails badly on their amplitudes
which are a measure of the stability of the POs. Finally,
the small deviations found for the chaotic case (A = 0.3)
are due to the fact that for this special billiard we can see
the differences between a real and an ideal system. In
the manufacturing process the shaping of the boundary, in
particular the cusp at the lower left corner of the billiard,
is mechanically a real challenge. Note that especially the
properties of the boundary, e.g., its curvature, determine
the amplitude of the peak in the length spectrum. Com-
paring numerically simulated data [17] for the A = 0.3
billiard with the Gutzwiller reconstruction [Eq. (4)]
shows better agreement, so that we can conclude that the
observed deviations for the chaotic billiard (lower part of
Fig. 3) are indeed due to slight mechanical imperfections.

In summary, we have to our knowledge performed for
the first time a reconstruction of an experimental length
spectrum of billiards with mixed phase space dynamics.
For this we used a recently derived trace formula which in-
terpolates between the regular Berry-Tabor and the chaotic
Gutzwiller cases. With the help of this formula [Eq. (3)],
we were able to describe our measured data satisfactorily.
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