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The Internet has a very complex connectivity recently modeled by the class of scale-free networks.
This feature, which appears to be very efficient for a communications network, favors at the same time the
spreading of computer viruses. We analyze real data from computer virus infections and find the average
lifetime and persistence of viral strains on the Internet. We define a dynamical model for the spreading
of infections on scale-free networks, finding the absence of an epidemic threshold and its associated
critical behavior. This new epidemiological framework rationalizes data of computer viruses and could
help in the understanding of other spreading phenomena on communication and social networks.

DOI: 10.1103/PhysRevLett.86.3200 PACS numbers: 89.75.Hc, 05.50.+q, 05.70.Ln
Many social, biological, and communication systems
can be properly described by complex networks whose
nodes represent individuals or organizations, and links
mimic the interactions among them [1,2]. Particularly in-
teresting examples are the Internet [3,4] and the World
Wide Web [5], which have been extensively studied be-
cause of their technological and economical relevance.
These studies have revealed, among other facts, that the
probability that a node of these networks has k connec-
tions follows a scale-free distribution P�k� � k2g , with
an exponent g that ranges between 2 and 3. The presence
of nodes with a very large number of connections (local
clustering) is indeed the key ingredient in the modeling of
these networks with the recent introduction of scale-free
(SF) graphs [6].

In view of the wide occurrence of complex networks
in nature it is of great interest to inspect the effect of
their features on epidemic and disease spreading [7], and
more in general in the context of the nonequilibrium phase
transitions typical of these phenomena [8]. The study of
epidemics on these networks finds an immediate practical
application in the understanding of computer virus spread-
ing [9,10], and could also be relevant to the fields of epi-
demiology [11] and pollution control [12].

In this Letter, we analyze data from real computer virus
epidemics, providing a statistical characterization that
points out the importance of incorporating the peculiar
topology of scale-free networks in the theoretical descrip-
tion of these infections. With this aim, we study by large
scale simulations and analytical methods the susceptible-
infected-susceptible (SIS) [11] model on SF graphs. We
find the absence of an epidemic threshold and its associ-
ated critical behavior, which implies that SF networks are
prone to the spreading and the persistence of infections at
whatever spreading rate the epidemic agents possess. The
absence of the epidemic threshold — a standard element
in mathematical epidemiology [11]— radically changes
many of the standard conclusions drawn in epidemic
modeling. The present results are also relevant in the field
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of absorbing-state phase transitions and catalytic reac-
tions [8].

The analysis of computer viruses has been the subject of
a continuous interest in the computer science community
[10,13–15], mainly following approaches borrowed from
biological epidemiology [11]. The standard model used
in the study of computer virus infections is the SIS epi-
demiological model. Each node of the network represents
an individual and each link is a connection along which
the infection can spread to other systems. Individuals ex-
ist only in two discrete states, “healthy” or “infected.” At
each time step, each susceptible (healthy) node is infected
with rate n if it is connected to one or more infected nodes.
At the same time, infected nodes are cured and become
again susceptible with rate d, defining an effective spread-
ing rate l � n�d [16]. Without lack of generality, we can
set d � 1. This model implicitly considers the presence
of antivirus software, since all infected individuals even-
tually return to the susceptible state, and represents the
case in which computer users do not become more alert
with respect to viral infection once they have cleaned their
computers which can again become infected [15]. The
updating can be performed with both parallel and sequen-
tial dynamics [8]. In models with local connectivity (Eu-
clidean lattices) and random graphs, the most significant
result is the general prediction of a nonzero epidemic
threshold lc [8,11]. If the value of l is above the thresh-
old, l $ lc, the infection spreads and becomes persistent.
Below it, l , lc, the infection dies out exponentially fast.
The epidemic threshold is actually equivalent to a critical
point in a nonequilibrium phase transition. In this case, the
critical point separates an active phase with a stationary
density of infected nodes from a phase with only healthy
nodes and null activity. In particular, it is easy to rec-
ognize that the SIS model is a generalization of the con-
tact process model that has been extensively studied in the
context of absorbing-state phase transitions [8]. Statistical
observations of virus incidents in the wild, on the other
hand, indicate that all surviving viruses saturate to a very
© 2001 The American Physical Society
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low level of persistence, affecting just a tiny fraction of
the total number of computers [10]. This fact is in striking
contradiction with the theoretical predictions unless in the
very unlikely chance that all computer viruses have an ef-
fective spreading rate tuned just infinitesimally above the
threshold. This points out that the view obtained so far
with the modeling of computer virus epidemics is very in-
structive but not completely adequate to represent the real
phenomenon.

In order to gain further insight into the spreading proper-
ties of viruses in the wild, we have analyzed the prevalence
data reported by the Virus Bulletin [17] from February
1996 to March 2000, covering a time window of 50 months.
We have analyzed in particular the surviving probability of
homogeneous groups of viruses, classified according to
their infection mechanism [9]. We consider the total num-
ber of viruses of a given strain that are born and died within
our observation window. Hence, we calculate the surviv-
ing probability Ps�t� of the strain as the fraction of viruses
still alive at time t after their birth. Figure 1 shows that
the surviving probability suffers a sharp drop in the first
two months of a virus’ life. This is a well-known feature
[10,13] indicating that statistically only a small percentage
of viruses gives rise to a significant outbreak in the com-
puter community. Figure 1, on the other hand, shows for
larger times a clean exponential tail, Ps�t� � exp�2t�t�,
where t represents the characteristic lifetime of the virus
strain [18]. The numerical fit of the data yields t � 14
months for boot and macroviruses and t � 6 9 months
for file viruses. The values of t are relatively independent
of the observation window considered, i.e., the analysis of
the viruses that are born and die in a time range of less
than 50 months yields results compatible with the full data

0 10 20 30
t (months)

10
−2

10
−1

10
0

P s(
t)

boot
file
macroτ = 14 months

τ = 7 months

FIG. 1. Surviving probability for viruses in the wild. The 814
different viruses analyzed have been grouped in three main
strains [9]: file viruses infect a computer when running an infect-
ed application; boot viruses also spread via infected applications,
but copy themselves into the boot sector of the hard drive and
are thus immune to a computer reboot; macroviruses infect data
files and are thus platform independent. The presence of an ex-
ponential decay is evident in the plot, with characteristic time t.
set, with larger fluctuations, however, due to the smaller
statistics. These characteristic times are impressively large
if compared with the interval in which antivirus software is
available on the market (usually within days or weeks after
the first incident report) and corresponds to the occurrence
of metastable endemic states. Such a long lifetime on the
scale of the typical spread/recovery rates would suggest
an effective spreading rate much larger than the epidemic
threshold. On the other hand, this is again discordant with
the always low prevalence levels of computer viruses.

The key point in understanding the puzzling properties
exhibited by computer viruses resides in the capacity of
many of them to propagate via data exchange with com-
munication protocols (FTP, emails, etc.) [10]. Viruses
will spread preferentially to computers which are highly
connected to the outer world and thus are proportionally
exchanging more data and information. It is thus rather in-
tuitive to consider the Internet topology as the effective one
on which the spreading occurs. The scale-free connectiv-
ity of the Internet implies that each node has a statistically
significant probability of having a very large number of
connections compared to the average connectivity �k� of
the network. That opposes conventional random networks
(local or nonlocal) in which each node has approximately
the same number of links k � �k� [19]. It is then natural
to foresee that scale-free properties should be included in
a theory of epidemic spreading of computer viruses.

To address the effects of scale-free connectivity in epi-
demic spreading we study the SIS model on SF networks.
As a prototypical example, we consider the graph gener-
ated by using the algorithm devised in Ref. [6]. We start
from a small number m0 of disconnected nodes; every time
step a new node is added, with m links that are connected
to an old node i with ki links according to the probability
ki�

P
j kj . After iterating this scheme a sufficient number

of times, we obtain a network composed by N nodes with
connectivity distribution P�k� � k23 and average connec-
tivity �k� � 2m. In this work we take m � 3. We have
performed numerical simulations on graphs with the num-
ber of nodes ranging from N � 103 to N � 8.5 3 106

and studied the variation in time and the stationary prop-
erties of the density of infected nodes r in surviving in-
fections; i.e., the virus prevalence. Initially we infect half
of the nodes in the network, and iterate the rules of the
SIS model with parallel updating. After an initial tran-
sient regime, the system stabilizes in a steady state with a
constant average density of infected nodes. In this steady
state, nodes are infected recurrently, without apparent pe-
riodicity. The prevalence is computed averaging over at
least 100 different starting configurations, performed on at
least 10 different realizations of the random networks.

The first arresting evidence from simulations is the ab-
sence of an epidemic threshold, i.e., lc � 0. In Fig. 2 we
show the virus prevalence in the steady state that decays
with decreasing l as r � exp�2C�l�, where C is a con-
stant. This implies that for any finite value of l the virus
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FIG. 2. Persistence r as a function of 1�l for different net-
work sizes: N � 105 (1), N � 5 3 105 (�), N � 106 (3),
N � 5 3 106 (�), and N � 8.5 3 106 (�). The linear behav-
ior on the semilogarithmic scale proves the stretched exponen-
tial behavior predicted for r. The full line is a fit to the form
r � exp�2C�l�.

can pervade the system with a finite prevalence, in suffi-
ciently large networks. In all networks with bounded con-
nectivity the steady state prevalence is always null below
the epidemic threshold; i.e., all infections die out. Fur-
ther evidence to our results is given by the total absence of
scaling of r with the number of nodes that is, on the con-
trary, typical of epidemic transitions in the proximity of a
finite threshold [8]. This allows us to exclude the presence
of any spurious results due to network finite size effects.
The present result can be intuitively understood by notic-
ing that for usual lattices, the higher the node’s connectiv-
ity, the smaller the epidemic threshold. In a SF network
the unbounded fluctuations in connectivity (�k2� � `) play
the role of an infinite connectivity, annulling thus the
threshold.

Finally, we analyze the spreading of infections starting
from a localized virus source. We observe that the spread-
ing growth in time has an algebraic form that is in
agreement with real data that never found an exponential
increase of a virus in the wild. Noteworthy, by applying
the definition of surviving probability Ps�t� used to
analyze real data, we recover in our model the same expo-
nential behavior in time (see Fig. 3a). The characteristic
lifetime depends on the spreading rate and the network
sizes, allowing us to relate the average lifetime of a viral
strain with an effective spreading rate and the Internet
size [20]. At the same time, the divergence of lifetimes
for larger networks points out that viruses live longer if
the Internet expands.

We can also approach the system analytically by writing
the single-site equation governing the time evolution of
r�t�. In order to take into account connectivity fluctua-
tions, we consider the relative density rk�t� of infected
nodes with given connectivity k; i.e., the probability that
a node with k links is infected. The dynamical mean-field
(MF) reaction rate equations can be written as [8,21]
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FIG. 3. (a) Surviving probability Ps�t� for a spreading rate
l � 0.065 in scale-free networks of size N � 5 3 105 (�),
N � 2.5 3 104 (�), N � 1.25 3 104 (�), and N � 6.25 3
103 (�). The exponential behavior, following a sharp initial
drop, is compatible with the data analysis of Fig. 1. (b) Relative
density rk versus k21 in a SF network of size N � 5 3 105 and
spreading rate l � 0.1. The plot recovers the form predicted in
Eq. (2).

≠trk�t� � 2rk�t� 1 lk�1 2 rk�t�	Q�l� . (1)

The creation term considers the probability that a node with
k links is healthy [1 2 rk�t�] and gets the infection via
a connected node. The probability of this event is pro-
portional to the infection rate, the number of connections,
and the probability Q�l� that any given link points to an
infected node. The MF character of this equation stems
from the fact that we have neglected the density correla-
tions among the different nodes. However, we have relaxed
the homogeneity assumption on the node’s connectivity
usually implemented in regular networks. By imposing
stationarity [≠trk�t� � 0] we find the stationary densities

rk �
klQ�l�

1 1 klQ�l�
, (2)

denoting that the higher the node connectivity, the higher
the probability to be infected. This inhomogeneity must
be taken into account in the self-consistent calculation of
Q�l�. Indeed, the probability that a link points to a node
with s links is proportional to sP�s�. In other words, a
randomly chosen link is more likely to be connected to a
node with high connectivity, yielding

Q�l� �
X

k

kP�k�rkP
s sP�s�

. (3)

Since rk is on its turn function of Q�l�, we obtain a
consistency equation that allows us to find Q�l� and rk .
Finally we can calculate the order parameter by evaluat-
ing the relation r �

P
k P�k�rk that expresses the aver-

age density of infected nodes in the system. In the SF
model considered here, we have a connectivity distribution
P�k� � 2m2�k23, where k is approximated as a continu-
ous variable [6]. In this case, integration of Eq. (3) allows
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one to write Q�l� � e21�ml�lm, at lowest order in l.
Averaging over rk , this finally gives

r � 2e21�ml. (4)

This very intuitive calculation recovers the numerical find-
ings and confirms the surprising absence of any epidemic
threshold or critical point in the model; i.e., lc � 0. Fi-
nally, as a further check of our analytical results, we have
numerically computed in our model the relative densi-
ties rk , recovering the predicted dependence upon k of
Eq. (2) (see Fig. 3b). It is also worth remarking that
the present framework can be generalized to networks
with 2 , g # 3, recovering qualitatively the same results.
Only for g . 4, epidemics on SF networks have the same
properties as on random networks. A detailed analysis of
the various cases will be presented elsewhere [22].

The emerging picture for epidemic spreading in com-
plex networks emphasizes the role of topology in epidemic
modeling. In particular, the absence of epidemic threshold
and critical behavior in a wide range of scale-free network
provide an unexpected result that changes radically many
standard conclusions on epidemic spreading. This indi-
cates that infections can proliferate on these scale-free net-
works whatever spreading rates they may have. This very
bad news is, however, balanced by the exponentially small
prevalence for a wide range of spreading rates (l ø 1).
This point appears to be particularly relevant in the case of
technological networks such as the Internet [4] that show
scale-free connectivity with exponents g � 2.5. For in-
stance, the present picture qualitatively fits the observation
from real data of computer virus spreading, and could solve
the long-standing problem of the generalized low preva-
lence of computer viruses without assuming any global
tuning of the spreading rates.
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