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Translocation of a Confined Polymer through a Hole

M. Muthukumar
Department of Polymer Science and Engineering, and Materials Research Science and Engineering Center,

University of Massachusetts, Amherst, Massachusetts 01003
(Received 16 August 2000)

Based on an analogy between polymer translocation across a free energy barrier associated with poly-
mer worming through a hole and classical nucleation and growth process, the escape time t is predicted
asymptotically to be N�N�r�1�3n . N is the polymer length, r is the monomer density prior to escape,
and n is the radius of gyration exponent. Monte Carlo simulation data collected in the high salt limit
(n � 3�5) are in agreement with the asymptotic law and provide vivid details of the escape.
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How a polymer worms through a narrow hole from a
confinement is a fundamental time-defining event in vari-
ous biological processes [1–4]. Examples include passage
of m-RNA through nuclear pore complexes, injection of
DNA from a virus head into the host cell, gene swapping
between the guest and host bacteria through pili, translo-
cation of proteins from the cis to trans side of a mem-
brane through channels, etc. In actuality, the polymer
translocation is orchestrated [4] by elaborate and precise
chemical specificity. Yet, it is also clear from empirical
data [1–4] that the typical length scales of the pores and
translocating polymers are of the order of ten nanometers
and that the polymer is subjected to significant conforma-
tional changes during translocation. It is therefore of in-
terest to apply polymer physics concepts [5] valid at the
coarse-grained levels to understand the above-mentioned
translocation processes in terms of key variables such as
the length and charged nature of the polymer, and size,
shape, and solvent quality of the donor compartment. This
Letter addresses the question of how an equilibrated poly-
electrolyte chain confined inside a spherical cavity escapes
when a narrow hole is introduced on the cavity. A for-
mula for the dependence of the translocation time on chain
length and size of the sphere is derived and verified us-
ing Monte Carlo simulations. The problem addressed here
is also of immediate relevance to the recent experiments
[6–8] on translocation of DNA and RNA through protein
channels under electric fields, gel electrophoresis [9,10],
size exclusion chromatography [11], and quantum nucle-
ation [12].

Consider the free energy landscape associated with an
escape of a polymer of N monomers from a sphere, as
sketched in Fig. 1. The free energy F1 of a polymer chain
in the initial equilibrium state I of confinement within a
sphere of radius R is F1 � E 2 kBT lnN , where N
is the number conformations that can be assumed by the
polymer, kBT is the Boltzmann constant times absolute
temperature, and E is the energy of interactions among
monomers, molecules, and ions in the solvent medium, and
the surrounding cavity. When a hole is introduced on the
cavity, the system becomes metastable and the chain es-
capes. In the final state II, the chain can assume a greater
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number of conformations due to the absence of confine-
ment, and consequently the free energy F2 is lower than
F1, the value of F2 being dictated by the size of the reser-
voir wherein the sphere is placed. Therefore there exists a
chemical potential gradient F1 2 F2 � NDm to push the
polymer out of the sphere. However, in its trajectory from I
to II, the chain must adopt conformations of the type illus-
trated in the transition state III, as the hole is designed to be
small enough to allow only one strand at a time. This con-
straint reduces the number of allowed chain conformations,
and consequently the chain entropy decreases and free en-
ergy increases to F3, setting up an entropic barrier F3 2

F1 � DF. Although this barrier is termed entropic barrier
[9,13], it is indeed a free energy barrier [10], because there
can be additional enthalpic contributions to F3 arising from
the interactions of monomers with the hole representing an
actual channel. The polymer chain must negotiate the en-
tropic barrier in its successful escape out to the sphere.

The calculation of the free energy landscape for the gen-
eral situation of a polyelectrolyte captured inside a cavity
under varying levels of added salt is nontrivial, and ex-
plicit expressions for F1, F2, and F3 are unknown, despite
some recent attempts [14]. However, simpler situations
of a chain in transit through a hole in a planar membrane
[15–17] and a Gaussian chain [18] released from a sphere

FIG. 1. Genesis of entropic barrier for polymer escape.
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have recently been addressed theoretically with divergent
predictions [16,17]. In view of the unavailability of ex-
plicit free energy expressions, we have performed Monte
Carlo simulations of chain escape from a sphere to obtain
some insight into the process and assumptions of theoreti-
cal models [15–18].

Consider a spherical cavity of inner radius R and wall
thickness l. A pearl-necklace chain of N beads of hard
diameter h freely jointed together by N 2 1 rigid links of
length � is grown inside the sphere. The potential interac-
tion between any two beads is taken to be Debye-Hückel,
and in this paper we consider only the limit of short Debye
lengths where the polyelectrolyte obeys the self-avoiding
walk statistics [19] in an unconfined medium. The inter-
action between the cavity and beads is hard, with the shell
of thickness h�2 from the inner surface of the sphere to-
tally inaccessible to the beads. The initially grown chain
is equilibrated for typically 103N2 Monte Carlo steps us-
ing the kink-jump dynamics and Metropolis algorithm as
described in Refs. [13,19]. After the equilibration step,
a hole of diameter 2� (and thickness l) is introduced at
one location on the wall of the sphere. From this point
of time onwards, the coordinates of the beads are moni-
tored and the statistics on the process of chain escape are
compiled, as the chain evolves with kink-jump dynam-
ics. In the simulations reported here, � � 1, l�� � 0.15,
h�� � 0.87, 2.0 # R�� # 6.59, and 9 # N # 232. Sta-
tistics were compiled based on at least 300 simulations for
each pair of N and R.

The typical course of polymer escape as observed in
these simulations is as follows (Figs. 2a–2f). Immediately
after the hole is created, the chain continues to undergo its
conformational changes inside the sphere (Fig. 2a). Af-
ter a certain time, one end arrives at the hole (Fig. 2b)
and the front end of the chain pushes outward (Fig. 2c) by
back and forth motion into and outside the sphere. This
step does not necessarily lead to the spontaneous spillage
of the chain in spite of the fact that the monomer den-
sity is high inside the sphere and essentially zero outside.
The entropic force arising from chain connectivity inside
the sphere dominates at this stage so that the chain end is
pulled back into the sphere (Fig. 2d) as time progresses.
Next the chain rattles around and one of the chain ends at-
tempts again to carry out the chain escape. After hundreds
of such attempts, a successful escape occurs eventually. In
each of the failed attempts, the number of monomers which
have managed to get outside is smaller than a critical num-
ber (which in turn depends on R and N). In the event of
successful escape, enough (Fig. 2e) monomers above the
critical number are pushed outside by a sequence of ran-
dom events which then allows the full escape (Fig. 2f).

These observations are fully consistent with the free
energy landscape of Fig. 1. Since a free energy barrier
separates states I and II, the metastable state of polymer
confined inside a sphere with a hole evolves into the final
state by nucleation. If a nucleus of monomers less than
FIG. 2. Polymer escape for N � 60, R�� � 3.0. The Monte
Carlo time is (a) 50, (b) 350, (c) 450, (d) 1000, (e) 4850, and
(f) 25 000.

a critical number (determined by the free energy barrier)
is made outside the sphere, it will dissolve back; i.e., the
chain will go back into the sphere. If a sufficiently large nu-
cleus containing more monomers than the critical number
is made outside the sphere by the initial random process,
then this nucleus will grow until the whole chain is outside.

The typical results for the N dependence of average es-
cape time t (duration of escape after the arrival of one end
at the hole for the case of successful escape) are given in
Fig. 3 for R�� � 2.5, 3.5, and 4.0. Data for other values
of R are not included in this figure for the sake of clar-
ity. The (average) arrival time ta, required by one chain
end to eventually arrive at the hole, resulting in successful
chain escape is also included in Fig. 3 for R�� � 3.5. As
expected t increases with N because it takes longer time
to thread a longer chain through a hole. Furthermore, as
N increases, the pressure from excluded volume builds up,
and it takes shorter time for the chain end to be placed at
the hole. It is to be noted that the chains under study are
not too long to allow additional complicating factors such
as entanglements [5]. Although these qualitative trends are
borne out in Fig. 3, the N dependence of t and ta are not
simple power laws, the sigmoidal shape of the curves in-
dicating a crossover behavior discussed below.

We now attempt to interpret these data using the anal-
ogy with the nucleation and growth. Following the usual
arguments [20] of the nucleation theory, the probability
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FIG. 3. N dependence of escape time t in Monte Carlo step
units. ≤, R � 2.5; �, R � 3.5; �, R � 4.0; =, arrival time ta
for R � 3.5. Curves are guides to the eye.

Wm�t� of finding a nucleus with m monomers in region II
at time t is given by [17]
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where Fm is the free energy of a chain with m monomers
outside the sphere and k0 (independent of N) is the rate
constant associated with the local friction in the transfer
of one monomer through the hole so that a nucleus of m
monomers grows into that of m 1 1 monomers. When
the drift (first) term in Eq. (1) dominates the problem, t is
given by the mean first passage time to be [17]

t �
kBT

k0Dm
N �

N
Dm

, NDm . 1 , (2)

and t � N2 for NDm , 1, where Dm is the chemical po-
tential gradient per monomer. These results are in excellent
agreement with experimental data [6,7] on the blockade of
a-hemolysin channel by single stranded DNA and RNA.

Since explicit expressions for Dm are currently unavail-
able for a self-avoiding walk inside a sphere, we apply well
known scaling results [5] for the confinement free energy
of a polymer chain. The free energy per chain of con-
finement inside a sphere of radius R is F1 � kBTN�R1�n ,
where n is the exponent defining the N dependence of the
radius of gyration Rg�Rg � Nn� of the chain in the ab-
sence of any confinement. In state II, the confining radius
is essentially ` so that F2 � 0. Therefore, Dm � �F1 2

F2��N � R21�n . Substituting this result in Eq. (2), we get

t � NR1�n � N�N�r�1�3n , (3)
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where r��N�R3� is the monomer density inside the sphere
in the initial state. For self-avoiding polymers (n � 3�5),
Eq. (3) gives the asymptotic law, t � N�N�r�5�9

for NDm . 1. All of our Monte Carlo data for t includ-
ing the samples given in Fig. 3 are presented in Fig. 4
where t is plotted against N�N�r�5�9 and the agreement
with scaling prediction is remarkable. Equation (3) is
valid only in the drift-dominated regime and in this
limit, t � N for a fixed R. The data in Fig. 3 are in
the crossover region between diffusion-dominated and
drift-dominated behaviors and constitute only the lower
part of Fig. 4. Therefore, for small N values, where
t � N2, systematic deviations from the asymptotic result
should occur as seen in Fig. 4.

An estimate of ta is made as follows. Based on classical
nucleation theory [20], the homogeneous nucleation rate
J��t21

a � for the present situation is given by

J � nk0 exp�2�F3 2 F1��kBT � , (4)

where n is the number density of ends (�2�R3). The free
energy F3 associated with placing one end at the hole and
the rest of the chain inside the sphere (i.e., a tail configura-
tion inside the sphere) is kBT �1 2 g0� ln�N 2 1� 1 �N 2

1�m and free energy F1 is Nm, where m is proportional to
R21�n as discussed above, and g0 is the critical exponent
associated with the impenetrability of monomers of a tail
across a wall [14,17]. Therefore, the barrier is estimated
to be �1 2 g0� ln�N�, for large N values. For self-avoiding
polymer chains, the universal critical exponent g0 is �0.69,
independent of the radius of the sphere (whose effect ap-
pears only through the chemical potential). Substituting
this result into Eq. (4) we get ta � r21N22g0 � N1.31.

FIG. 4. Comparison with scaling prediction. r is 0.168, ≤;
0.27, �; 0.387, �; 0.443, �; and 0.57, 1. Solid line, a guide to
the eye, has a slope of 1.
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FIG. 5. N dependence of nucleation time ta. r is 0.27 for ≤
and 0.443 for �. Predicted slope of 1.31 is shown as a guide.

This estimate is in reasonable agreement with the simula-
tion data as shown in Fig. 5.

In summary, the fundamental problem of how a poly-
mer escapes through a hole can be understood by mapping
to the nucleation phenomenon and combining with scal-
ing laws of polymer physics. We hope that this approach
will provide useful strategies to facilitate selective translo-
cation of polymers of different sequences across specific
biological and synthetic pores and an understanding of sig-
nal transduction by manipulating the corresponding free
energy barriers. Furthermore, we hope that further inves-
tigations will clarify and append the adequacy of the for-
malism employed here. The osmotic and entanglement
contributions when multiple chains are confined, and spe-
cific interactions between the polymer and the pore, are of
particular interest.
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