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Prediction of Chaotic Dynamics in Sheared Liquid Crystalline Polymers
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A rheological model for rodlike polymers in the nematic liquid-crystalline phase is analyzed to char-
acterize irregular dynamical response under pure shear flows. The model is studied with a continuation
approach, and a period doubling scenario is detected. Time series generated via simulation are studied
with nonlinear analysis tools to prove the existence of chaotic regimes.
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Polymers in the nematic phase show several peculiar
rheological features that are due to both intrinsic anisotropy
of the molecules and the presence of spatial variation of
molecule average orientation in the bulk. These phases
are successfully described with a molecular model [1,2].
The rodlike molecules are treated as rigid rods, and the
sample is described with an orientational distribution func-
tion. The sample evolution is predicted with a continu-
ity equation for the distribution function (a Fokker-Planck
equation) that accounts for thermal agitation, excluded vol-
ume effects, and macroscopic flow. The stress tensor is cal-
culated once the distribution function is known as derived
by Doi and Edwards [3]. The coupling of the continuity
equation for the distribution function and the stress equa-
tion gives a rheological constitutive equation for rodlike
polymers. In its homogeneous formulation, the model is
capable of describing the stress response at intermediate
and high shear rates —that is, when spatial distortion ef-
fects can be neglected [4,5].

Some recent time resolved measurements [6] of the
linear conservative dichroism on liquid crystalline poly-
mers (a lyotropic solution of polybenzylglutamate in m
cresol) subjected to shear flows show an irregular response
at intermediate shear rates, which could be attributed
to chaotic behavior. Strange dynamics have also been
experimentally reported by Bandyopadhyay et al. [7], who
detected a chaotic dynamics at high shear rates in a system
consisting of wormlike micelles that could be in the
nematic phase. It is worth remarking that Bandyopadhyay
et al. attributed the inception of chaotic dynamics to shear
banding.

Those observations motivated the present investigation
on the rigid rod model in order to prove whether chaotic
behavior is indeed predicted. The sample is described with
a population of rigid rods [1,2]. The orientational distri-
bution function c�u, t� gives the probability density that a
4 0031-9007�01�86(14)�3184(4)$15.00
rod, at time t, is oriented along the direction specified by
the pseudoversor u. In dimensionless form, the continuity
equation for the orientational distribution function is
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In Eq. (1), t is time made dimensionless with an average
rotational diffusivity (not appearing in the equation), kBT
is the Boltzmann factor, V �u� represents a mean-field ne-
matic potential, and K is the dimensionless velocity gra-
dient. The partial derivative with respect to u represents
the gradient over the unit sphere. It should be remarked
that Eq. (1) is written by assuming constant rotational dif-
fusivity, and rods with infinite aspect ratio. The nematic
potential here considered is the Maier-Saupe [8] one:

V �u� � 2
3
2

UkBT �uu� : uu , (2)

where U is the intensity of the nematic field, and the
brackets imply ensemble average. The other important pa-
rameter is the nondimensional (through the rotational dif-
fusivity) shear rate G contained in the velocity gradient.
The velocity of the shear flow here considered is given by
v � �Gz, 0, 0�; thus, x is the flow direction, y is the vor-
ticity direction, and z is the velocity gradient direction. In
the following, the plane xz will be referred to as the shear-
ing plane.

Equation (1) is reduced to a set of ordinary differential
equations (ODEs) through a Galerkin scheme [5] once the
distribution function is expanded in the eigenfunctions of
the Laplacian operator in spherical coordinates, i.e., in
© 2001 The American Physical Society
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spherical harmonics:

c�t; u� �
X̀
l�0
even

lX
m�2l

bl,m�t�Ylm�u� . (3)

In Eq. (3), the coefficients bl,0 are real, and the rest of them
are in general complex; they are all real if the distribution
function is symmetric with respect to the xz plane. Only
even l indices are needed for the antipodal symmetry of the
distribution function. Furthermore, since the distribution
function is real, the following relation holds:

bl,2m � �21�mb�
l,m . (4)

By truncating the expansion to some level n, one ends up
with a finite set of ODEs. The truncation level is chosen
to ensure discretization convergence, and it proved suffi-
cient to deal with n � 10 for the parameter values here
investigated; in fact, the results were quantitatively con-
firmed also with n � 12. A system consisting of 5 real
and 30 complex ODEs is obtained with n � 10. Two pa-
rameters, U and G, appear in the model. The resulting
dynamical system is 65 dimensional, the bl,m coefficients
being the state variables.

Solution diagrams were obtained with a continuation al-
gorithm [9] (AUTO97 [10]). With the continuation tech-
nique, one starts from a known stationary or periodic
solution, and follows the solution curve as one parameter
value is gradually changed. During the continuation pro-
cess, bifurcation points are detected as they are encoun-
tered. With this approach, however, only stationary and
periodic solutions can be found, while quasiperiodic and
chaotic solutions cannot be traced out.

Figure 1 shows the solution diagram for U � 5.27. For
the sake of illustration, the imaginary part of b2,2 is re-
ported versus the nondimensional shear rate. For this U
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FIG. 1. The solution diagram for U � 5.27 (solid line: stable
stationary solutions; dashed lines: unstable stationary solutions;
�: stable periodic solutions; �: unstable periodic solutions;
�: stable period 2 solutions; �: unstable period 2 solutions).
For periodic solutions the maximum attained during the oscilla-
tion is reported. The inset reports qualitatively the period dou-
bling cascades. Types of solutions are reported.
value the system is predicted to be in the nematic phase
at rest �G � 0�. The solution structure is very similar to
that of Fig. 4 of Faraoni et al. [11] that was calculated at a
slightly different U value �U � 5.33�. The reader should
refer to that paper for a detailed description of the solution
diagram structure; suffice to mention that whenever the
imaginary part of b2,2 is nonzero the distribution function
is not symmetric with respect to the shearing plane, and the
average orientation is out of that plane. Flow-aligning (sta-
tionary) solutions are found at high shear rates, whereas
time periodic solutions are predicted at low shear rates.
However, an important difference is the appearance of har-
monic cascades departing from the out-of-plane oscillat-
ing branches at intermediate shear rates, while in Faraoni
et al. only 2 period oscillations are found at that different
U-value. The harmonic cascades are qualitatively reported
in the insets of Fig. 1. It is worth noting that the two cas-
cades are qualitatively identical since they represent two
mirror symmetric solutions with respect to the shearing
plane.

Figure 2 shows the evolution of the average sample ori-
entation plotted onto the unit sphere for the periodic solu-
tions within the harmonic cascade. The results have been
obtained by integrating the ODEs with an adaptive time
step Runge-Kutta-Verner fifth and sixth order method. The
average orientation here chosen is the eigenvector corre-
sponding to the largest eigenvalue of the second rank ori-
entation tensor �uu�. This quantity at equilibrium �G � 0�
gives the director orientation. It is apparent that the average
orientation lays out of the shearing plane, eventually expe-
riencing very complex oscillations (Fig. 2d). The G values
corresponding to the period doubling bifurcations and an
estimation of the Feigenbaum number [12] are reported

FIG. 2. The trajectories of the eigenvector corresponding to
the largest eigenvalue of �uu� after the transient. The orbits
are plotted over the unit sphere. (a) G � 3.15; (b) G � 3.20;
(c) G � 3.23; (d) G � 3.30.
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TABLE I. The G values corresponding to period doubling bi-
furcations in the harmonic cascade. The third column reports
the estimation of the Feigenbaum number.

Label G Gi2Gi21
Gi112Gi

PDL1 3.162 102 · · ·
PDL2 3.228 629 4.1875
PDL3 3.244 516 4.5903
PDL4 3.247 977 4.6519
PDL5 3.248 721 · · ·
PDR1 4.271 441 · · ·
PDR2 4.193 733 5.3217
PDR3 4.179 131 4.6967
PDR4 4.176 022 · · ·

in Table I. It so appears that these successive estimates
are approaching the limiting value (4.6692 . . .) typical of
most period doubling chaotic scenarios. Again, it should
be remarked that the spherical harmonic truncation has no
impact on the period doubling cascade, in fact, bifurcation
points calculated with n � 12 differ at most by 0.025%.

To elucidate on possible chaotic dynamics, time series
of state variables generated via simulation were studied.
This approach was implemented because system high di-
mensionality makes its direct analysis cumbersome. The
b2,0 coefficient was monitored with a nondimensional time
sampling rate Dt � 0.025. Indeed, only one state variable
was tracked since the attractor can be reconstructed from
it on the basis of embedding theorems [13,14]. These
theorems state, under generic conditions, that the attrac-
tor in the original phase space has a one-to-one image in
the so-called embedding space. The trajectory in this new
space consists of vectors given by

sn � �sn2�m21�t , sn2�m22�t , . . . , sn� , (5)

where m represents the embedding dimension, and t is
the so-called time delay. The time series analysis has been
accomplished with the package TISEAN [15] to obtain a
Poincaré section, an estimation of the largest Lyapunov ex-
ponent, and the attractor correlation dimension. The time
delay was measured with the mutual information technique
[16], and confirmed with the correlation function theory
[17] (t � 55 for the chosen Dt). Once the delay time was
known, the embedding dimension was determined with the
false nearest neighbor approach [18]. For G � 3.44, that
is well within the harmonic cascade, the embedding di-
mension was found to be m � 4. With the time delay and
the embedding dimension it is possible to reconstruct a
Poincaré section of the attractor. This map was obtained
by choosing as position of the crossing the average of the
data, and its projection onto the plane stst1t is reported
in Fig. 3. It is apparent that a very complex structure is
found.

The estimation of the largest Lyapunov exponent was
performed with the method proposed by Kantz [19]. Fig-
ure 4 reports the logarithm of the stretching factor versus
3186
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FIG. 3. A Poincaré section for G � 3.44.

an iteration number for different embedding dimensions.
It is worth remarking that the slope at intermediate itera-
tions saturates for an embedding dimension of 4 thus con-
firming the false nearest neighbor result. This slope for
m $ 4 gives an estimation of the dominant Lyapunov ex-
ponent. This quantity is positive ��0.232�, and thus pre-
dicts a chaotic dynamics [20].

Finally, the attractor correlation integral [21] is illus-
trated in Fig. 5. The correlation dimension is the slope of
the curves in the linear range. Data for different embed-
ding dimensions are reported. Again, the slope is found
to saturate for m $ 4, and it is ca. 2.24, confirming the
fractal nature of the attractor.

To conclude, we have proved the existence of a chaotic
regime in a constitutive equation for nematic liquid crys-
talline polymeric mesophases subjected to constant shear
flows. The model is specified by assuming spatial unifor-
mity, rods with infinite aspect ratio, and constant average
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FIG. 4. The stretching factor versus iteration for G � 3.44.
Results for different embedding dimensions are illustrated
(�: m � 3; �: m � 4; �: m � 5; �: m � 6). The dashed
line indicates the slope at intermediate iterations for m $ 4.
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FIG. 5. The correlation integral for G � 3.44. Results for
different embedding dimensions are illustrated (�: m � 2;
�: m � 3; �: m � 4; �: m � 5; �: m � 6). The dashed
line indicates the slope in the linear range for m $ 4.

rotational diffusivity. The chaotic window emerges from a
period doubling cascade at intermediate shear rates —that
is, in a shear rate range where the rheological predicting ca-
pabilities of the model are significant. The chaotic regime
is due to the nonlinearities present in the excluded volume
mean field [Eq. (2)]. Note, finally, that experimental re-
sults [6,22] show irregular responses at shear rates slightly
below the flow aligning regime in good agreement with the
present theoretical predictions.
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