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We compute the magnetic shielding tensor within the London approximation and estimate the Knight
shift of single-wall carbon nanotubes. Our results indicate that high resolution '*C NMR should be able
to separate the metallic and insulator character of the nanotubes since a 11 ppm splitting is predicted
from the respective resonances. As a model for disorder, bending, and defects in these structures, we
investigate the magnetic response of nanotubes with finite size. We get a small line broadening coming
from an intrinsic length dependent resonance effect. The nanotube packing is also studied and leads to
a 20 ppm broadening which disappears under experimental high-resolution conditions.
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Nuclear magnetic resonance (NMR) has been proved
to be a useful tool to study the dynamics and electronic
structure of fullerene [1] and nanotube [2,3] materials. In
spite of this experimental relevance, for a refined charac-
terization of carbon materials, not much theoretical work
is available about infinite sp>-like carbon objects due to
the intrinsic diamagnetic divergence in the graphite sus-
ceptibility at T = 0 K [4]. Moreover, the change of mag-
netic properties when going to low dimensional graphitic
nanostructures is still not well understood. In particu-
lar, single-wall carbon nanotubes (SWNTs), which can be
seen as long rolled graphene sheets, have attracted a lot of
attention as promising materials for nanotechnology appli-
cations and composites. These particular quasi-1D struc-
tures, with finite-size effects as a one dimensional quantum
box [5,6], show interesting correlations between geometry
and electronic properties [7]. Of course, the magnetic re-
sponse is affected by this interplay, as shown in magnetic
susceptibility [8] and magnetotransport [9]. In this Letter,
we aim to understand the microscopic mechanisms which
contribute to the NMR spectra of SWNTs, by performing a
detailed theoretical study of the magnetic response of per-
fect and isolated tubes as a function of temperature.

By measuring the shift of the Larmor frequency of the
nuclear spin, NMR in solids gives information about the
chemical environment and the metal-like properties of a
compound. The NMR shift which represents the perturba-
tion of the applied field due to the electrons consists of a
sum of two tensorial contributions: the shielding tensor
‘@, which is the contributior}_) of orbital electronic mag-
netism, and the Knight shift K, which is a Fermi contact
effect of electron spin which appears uniquely in metals.
The chemical shift anisotropy tensor & is measured ex-
perimentally by comparing to a standard reference as 6 =
Tt — @ + K [10]. The & tensor can be separated
in two parts: the London ring-current (RC) contribution
(@rc) and the Pople correction [11]. The first part is an
effect of the interatomic electronic current, and the sec-
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ond one is a local intraatomic part that can be written as a
function of the hybridization of the carbon atom [12].

Whereas the Knight shift (in metallic compounds) and
the Pople part are the dominant contribution to the NMR
chemical shift in fullerides due to the very different local
environment the C atoms see and the larger s character
of the corresponding 7r; orbital (=0.08 in Cgp, for ex-
ample), this is not the case for the nanotubes. A simple
geometric analysis of the curvature of the graphene needed
to form tubes with diameters close to the experimental
value (R = 0.68 nm [13]) indicates that the total degree
of sp> — sp? rehybridization of the C atom orbitals is
rather small and constant. In fact, the s character of the 7|
hybride orbital slightly varies around 5 X 1073. Even if
the nanotube is bent, the rehybridization of the 77, is small
compared to that of the fullerene structures. Consequently,
the Pople part is nearly the same for all the nanotubes, and
does not depend either on the chirality or the particular de-
formation. Moreover, in high-resolution solid state NMR,
the orientation of the '3C is averaged with respect to the
magnetic field, and only the isotropic part of the chemi-
cal shift tensor is measured: o, = % Tr[@]. In our case,
the Pople part gives rise to a global shift of the whole
magnetic response and will not allow us to distinguish be-
tween different tubes. Thus as we are interested in relative
changes of the chemical shift tensor we can safely neglect
this part in the present calculations [14]. Furthermore,
since the density of states of SWNTs at the Fermi level
is small, g(Ey) = 0.015 states/eV - spin - atom [15], the
Knight shift contribution can be neglected in the present
study.

SWNTs are usually closely packed in bundles with an
average intertube distance of 3.4 A. Tube-tube interactions
might influence the shift of a given '3C spin and, therefore,
have to be considered. To make direct contact with ex-
periments, it is also important to look at the modification
of the properties of perfect structures induced by disorder
or defects. Indeed, SWNTs with length of ~1 um are

© 2001 The American Physical Society



VOLUME 86, NUMBER 14

PHYSICAL REVIEW LETTERS

2 APrIL 2001

never perfectly straight: TEM images show that they are
often bent or kinked [16]. Since the local density of states
is drastically modified by these defects [17], they can be
seen as a set of nearly isolated straight segments of finite
length, interconnected by bendings or defects [18]. Simi-
larly, localization centers, such as junctions, Stone-Wales
defects, or chemical functionalizations, can affect the mag-
netic response by creating effective quantum boxes within
the tube. We point out that even if the number of those
centers is scarce and hard to be directly observed in a
NMR experiment, their presence defines a confinement re-
gion (quantum box) that drives a change in the magnetic
response of the carbon atoms within the quantum box.
Hence, bundle and finite-size effects have to be consid-
ered when describing experimental NMR studies.

From the previous discussion, we are left with the com-
putation of the London RC part of the shielding tensor
‘@’re. This is done by introducing a probe dipole m in the
system (where the '>C spin sits) that interacts with the ex-
ternal applied magnetic field Hy and the electron-induced
magnetic field. The @rc tensor can be defined through
the corresponding Zeeman splitting due to the total inter-
nal field as 2m - H = 2m - (T — Orc) - Hy. If now
we remove the direct interaction between Hy and m we
get the following expression for the @ rc tensor:

Q(Hop,m,T) — Q(Hp, —m, T)
(O-RC)a,B = 2mH,

>Holla,m||,3 ’
(D

where o and (8 are the spatial directions x, y, or z (the
tube axis is assumed to be along the z direction), () is the
grand-canonical potential at temperature 7" defined as

QHy,m,T) = —kBTZhl[l + exp<%>] 2)
n B

Here €, are the eigenenergies of the system under the ac-
tion of the applied field Hy and the dipole moment m, and
€r is the Fermi level. Briefly, we use a tight-binding model
with one 7 electron per site and expand the secular equa-
tion on a gauge-invariant basis set. The field-dependent
hopping #;; between two atomic orbitals i and j is taken as
the free hopping t?j multiplied by a phase factor [19,20]:
—ie
tij = llol CXP<% (A,
with R; the position of site i, and A; = A(R;) the vector
potential at site i [21]. The RC shielding tensor is diago-
nalized and from the three principal values the static line
shape of the NMR powder spectrum is obtained [22]. In
our case, the o,, component is a principal value of the
tensor, as a consequence of the uniaxial character of the
nanotube. The two other components are called the radial
Oraq and orthoradial o yppo-
Figure 1 presents the computed powder spectra of RC
chemical shift tensor for isolated infinite nanotubes at room
temperature. We find a very weak dependence of the line
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FIG. 1. Calculated T'grc tensor for infinite, isolated, and per-
fect SWNTs. They illustrate the distinct magnetic response de-
pending on the specific electronic character of the tube: the o,
principal value (shown with arrows) is paramagnetic (o, < 0)
for a metallic tube and diamagnetic (o, > 0) for a semicon-
ductor. The 1/T temperature dependence of the o, element of
metallic tube shielding tensor is shown in the inset [the given
example is the (5,5) tube]. The simulated response of a bulk
sample (see text) is shown as a distribution of static tensors, or
isotropic lines, where the response of metallic and semiconduct-
ing tubes is separated by 11 ppm.

shape on both tube radius and chirality. Only the o, com-
ponent is different according to the metallic or semicon-
ducting character of the tube. For clarity, only the (10, 10)
metallic and the semiconductor (12, 8) tubes are drawn.
The o, principal value is T independent and diamagneti-
cally shifted for semiconductors. For metallic tubes, it is
paramagnetically shifted, with a 1/T dependence as shown
in the inset. The g and oo values are always dia-
magnetic, but o oo is much smaller than o,q. Therefore
NMR can resolve the electronic tube character but not the
underlying structural properties of carbon nanotubes.

As tube chirality cannot be selected in the production
process, we also performed a random distribution that will
simulate an actual sample in the diameter range determined
experimentally [13]. We fixed the ratio of the numbers of
metallic and semiconducting tubes to 1 to 2. The static
response is drawn in Fig. 1; however, the most relevant
result is the isotropic line of the sample where a splitting
of 11 ppm between the metallic and semiconducting re-
sponse is predicted. The metallic line is found to be near
zero, whereas the semiconducting one is diamagnetically
shifted. This splitting and the relative intensities of the
lines could be used to probe the metallic-insulator ratio in
bulk sample with high-resolution NMR measurements.

It is important to check how the properties of these
isolated structures are changed when they are packed into
a bundle. We use two approximations: first, the tube-tube
interactions are neglected, then the bundle is considered as
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a set of isolated structures. With this assumption, the total
field acting on the 'C is the sum of the applied field and
the contributions of each tube:

H = (T - > ‘(7’“))H0. (4)

i€Ebundle
Second, we keep only first-nearest-neighbor interaction, as
H=(T -2V - 2H,, (5)

where @V is the internal chemical shift of the tube car-
rying the nuclear magnetic moment m (result shown in
Fig. 1), and @® is the shift due to the tube which is
located at approximately 3.4 A from the '3C. Since the
magnetic interaction is not sensitive upon the chirality,
and the radius is basically constant in a bundle, we re-
stricted our model to the metallic (10, 10) and semicon-
ducting (12,8) which have equivalent radii. A 20 ppm
broadening of the tensor due to the influence of the first
neighbor tube is obtained. It is of the same order of mag-
nitude as the metallic-semiconductor splitting. Hence the
static shielding tensor @’ r¢ for isolated tubes is no longer
relevant. However, our results indicate that the 7@ ten-
sor is quasi-independent of the electronic properties of the
first neighbor tube. In addition, this tensor is symmet-
ric and centered at O ppm, then it reduces to a Lorentzian

2 .
centered near zero 0'1(53 = (), when averaged over all ori-
entations. The isotropic average of all the bundle will be
nearly equal to the isotropic value of the isolated tube,

(i (1)
( > 0'“)) = o, (©)
i€bundle iso

and the problem of broadening is circumvented.

We turn now to the calculation of the effects of disor-
der and bendings treated as finite-size effects. The reso-
nant behavior in armchair tubes which appears as a closing
of the highest occupied—lowest unoccupied molecular or-
bital (HOMO-LUMO) gap each time the length of the
box is 3n + 1 periods has already been predicted [23,24].
These “magic numbers” can be explained by a simple
particle-in-a-box model [5], and are found to be an im-
portant criterion in tunneling magnetic transport [25]. It is
worth noting that not only armchair tubes, but also some
chiral ones show this resonant behavior, such as the (11, 2)
or the (7,4), for example. It is possible to write a cri-
terion to determine if the tube will be resonant or not
[26]. We show in Fig. 2a that the static susceptibility
(case Hy || z) of the finite (5,5) armchair tube is maxi-
mum for L = 1.23 + n X 7.38 A. That corresponds to
(n + %)A r and to the closing of the HOMO-LUMO gap of
the structure. This property is consistent with Van Vleck
paramagnetism, where the effect of the magnetic field is
written as a second order perturbation, which is divergent
when the Fermi level is degenerate. The resonant behavior
(magic numbers) of the (11, 2) is also presented. We show
on the same figure that none of the zigzag tubes [we take
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FIG. 2. Finite length effects in magnetic response of carbon
nanotubes. (a) The scaled magnetic susceptibility y(L)/ ()
for different finite-size tubes when Hj || z. The “magic num-
bers” in the response of armchair (5,5) or chiral (11,2) are
visible with a Ar/2 periodicity, whereas the evolution of the
susceptibility for semiconducting or nonresonant metallic tubes
such as zigzag tubes is continuous. (b) The magic numbers are
still present in the isotropic line o, of armchair tubes. By com-
parison, nonresonant tubes show a smooth evolution of the oi,.
Semiconducting tubes reach the value of infinite tube very early
and do not show any finite length effect.

the (10,0) and (9, 0) as examples] exhibit resonances as a
consequence of the same criterion [26]. To illustrate the
microscopic phenomena acting in the magnetic response
of small systems, we plot in Fig. 3 the interatomic cur-
rents, due to an applied field (Hy || z), on the (10, 10) tube
with two different lengths. These currents are localized at
the antinodes of the standing waves along the 1D box, and
reach a maximum when the interference is constructive,
i.e., when the length is 3n + 1 periods. By comparison,
nonresonant tubes such as the (9, 0) show a uniform distri-
bution of currents, without the Ag/2 oscillations.

We check how the magnetic response of tube elements
with length L affects the isotropic line of the shielding
tensor, by plotting on Fig. 2b, the difference ojso(L) —
Tiso(). The 13C spin is located in the bulk of the tube to
avoid the edges’ effects. The response of a finite-size struc-
ture differs from the response of an infinite tube mainly by
the o, element for the metallic tubes. The broadening
of the linewidth, due to the distribution of lengths, acts
uniquely on the line of the metallic tubes. This broaden-
ing exhibits a 1/L dependence (see Fig. 2b). For realis-
tic lengths between two scattering centers (=0.1 wm) this
broadening appears to be very small (<0.5 ppm).

In summary, we have performed a systematic study of
the '>C NMR chemical shifts of SWNTs. We have shown
that the Knight shift and the intraatomic part of the orbital
contribution can be removed without losing the physical
relevance of the computations. The ring currents’ contri-
bution to the NMR shift of perfect and isolated SWNTs
shows a 11 ppm splitting between the isotropic lines of
semiconducting and metallic nanotubes. This distinct
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Interatomic currents for a finite metallic (10, 10) tube. The results are in units of Jyenzene. Bottom: Tube with a

length of 19 unit cells (magic number) where the Ar/2 oscillations are visible, with a weak localization at the edges. Top: Tube
with a length of 20 unit cells (nonmagic number), where the currents are lower and show destructive interferences in the middle of

the box.

response could be used to characterize the electronic
structure of a bulk nanotube sample. In addition, we
prove that this splitting is still relevant even if the bundle
packing of tubes and the finite-size effects are taken
into account. Finally, the presence of paramagnetic or
ferromagnetic impurities in the vicinity of bundles (that
actually happens in experiments) will broaden the NMR
response due to the inhomogeneous local field created by
these impurities that act on the 13C sites [27].
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