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Ferromagnetic Phase Transition in a Heisenberg Fluid: Monte Carlo Simulations
and Fisher Corrections to Scaling

I. M. Mryglod,1,2 I. P. Omelyan,1 and R. Folk2

1Institute for Condensed Matter Physics, 1 Svientsitskii St., UA-79011 Lviv, Ukraine
2Institute for Theoretical Physics, University of Linz, A-4040 Linz, Austria

(Received 20 November 2000)

The magnetic phase transition in a Heisenberg fluid is studied by means of the finite size scaling
technique. We find that even for larger systems, considered in an ensemble with fixed density, the
critical exponents show deviations from the expected lattice values similar to those obtained previously.
This puzzle is clarified by proving the importance of the leading correction to the scaling that appears
due to Fisher renormalization with the critical exponent equal to the absolute value of the specific heat
exponent a. The appearance of such new corretions to scaling is a general feature of systems with
constraints.
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Monte Carlo (MC) simulations of finite systems near
phase transitions have received considerable attention in
recent years [1]. Of notable current interest are continuum
spin fluid models [2] which are considered as a first step
towards the modeling of ferrofluids [3] and adsorption sur-
face phenomena [4]. Several important results, which have
both theoretical and experimental interest, were obtained
for such models. For example, it was found that the phase
diagrams for spin fluids due to the interplay between spin
and translational degrees of freedom are much more com-
plicated [2] than in nonmagnetic liquids. Magnetic ordered
phases can exist both in gas and liquid states. By apply-
ing an external magnetic field, one can shift significantly
the locus of the gas-liquid transition [5] and change the
dynamic properties [6]; both the static and dynamic prop-
erties in the models discussed show differences from the
nonmagnetic fluid and the magnetic lattice model.

One important question in this context is whether the
magnetic transition in a Heisenberg fluid belongs to the
same universality class as the corresponding transition in
the lattice model. On general grounds (annealed systems)
[7], the lattice universality class is expected. In Ref. [8] us-
ing the MC method, a novel set of critical exponents was
found that were in disagreement with the expected results.
Similar disagreements were later obtained for two- and
three-dimensional (2D and 3D) Ising fluids [9,10], where
Fisher renormalized exponents were expected [7]. In all
the cases mentioned, a weak dependence of universal quan-
tities on the density of particles n � N�V and systematic
deviation from the predicted critical exponents were ob-
served in the MC simulations. The general conclusion was
that computer simulations were strongly affected by non-
linear crossover effects, which hide the true asymptotic
critical behavior, giving only effective critical exponents.

The goal of the present study is to resolve this puzzle by
performing a new series of MC simulations for a Heisen-
berg fluid, considering larger finite size systems, and to
compare the results obtained with the previous data [8].
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Contrary to the belief that the true asymptotic critical be-
havior would be observed, deviations from the expected
exponents remained. It is the aim of this Letter to show
that a new correction term [7] (Fisher correction term) has
to be taken into account in the finite size scaling (FSS)
even for very large systems.

Let us consider a classical system, composed of N mag-
netic particles of mass m and described by the Hamiltonian
[6,8]

H �
NX

i�1

mv2
i

2
1

NX

i,j

�F�rij� 2 J�rij�si ? sj� , (1)

where ri and vi denote the position and velocity of particle
i carrying spin si . In our MC study, the liquid subsystem
potential F�rij� was chosen to be of soft-core-like form,
F�r� � 4´��s�r�12 2 �s�r�6� 1 ´ at r , 21�6s and
F�r� � 0 otherwise, and the exchange integral J�rij� . 0,
describing spin interactions, was modeled by the Yukawa
function, J�r� � e�s�r� exp��s 2 r��s�. The function
J�r� was truncated at R � 2.5s and shifted to zero at the
truncation point (this avoids force singularities during MD
calculations [11]). Staying within the classical approach
we consider si as a three-component continuous vector
with a fixed length jsij � 1.

The simulations were carried out in the basic cubic box
V � L3 (employing periodic boundary conditions) at the
reduced density [12] of n� � Ns3�V � 0.6 for a reduced
core intensity of ´�e � 1. A number of particles N were
taken as N � 125, 256, 512, 1000, 2048, 4000, 8000,
and 16 384. The simulations have been performed for five
values of reduced temperature T�, T� � kBT�e � 2.000,
2.025, 2.050, 2.075, and 2.100. The system was allowed
to achieve equilibrium for 100 000 N attempted moves.
The total number of trial moves per particle (cycles) per-
formed in the equilibrium state was 1 000 000. The ca-
nonical averaging over the system was carried out using a
biasing scheme [13,14] for sampling orientational degrees
of freedom. To minimize computational costs, the cell list
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technique [14] was employed in handling the interparticle
interactions.

The critical properties of a system in the thermody-
namic limit may be extracted from the behavior of finite
size systems by examining the size dependence of ther-
modynamic quantities [1,15]. According to the FSS the-
ory, various thermodynamic quantities can be written in
a scaling form q�L, T � � Lxq�nQ�z�, where L is a linear
length of system, xq is a critical exponent of the quantity q,
and z � tL1�n is the temperature scaling variable with t �
�T 2 Tc��Tc (Tc and n are, respectively, the bulk critical
temperature and critical exponent of correlation length j).
Because we are interested in zero-field properties, only the
scaling variable z appears in the scaling function Q.

There are several methods to determine the critical tem-
perature Tc. One of them is the Binder crossing tech-
nique [1] formulated for the fourth-order cumulant U4 �
1 2 M4��3M2

2 �, where Ml � �ml�, m � jmj, and m �
N21

PN
i�1 si . This method does not need any assumptions

about critical exponents, but for small systems the position
of intersection points between any two curves U4, related
to systems with lengths L and L0, depends usually on L
and L0, because of corrections to FSS. We have estimated
the value of Tc as the average over the cross-section tem-
peratures Tcross�L, L0�, found for systems with L � Li and
L0 � Li11 (i $ 3), giving Tc � 2.055 6 0.001. Here and
below the increasing subscript i denotes increasing num-
bers of particles Ni from the set �Ni	 considered. In a
similar way, we found U�

4 � 0.618 6 0.003. The same
estimate for Tc has been found by using the crossing tech-
nique for the function j�Li , T ��Li (see, e.g., [16]) within
the phenomenological renormalization group scheme. Us-
ing a more precise method for extracting Tc [1] from
the values Tcross�L, L0�, obtained for the Binder parame-
ter U4 with the fixed ratio L4�L1 � L5�L2 � L7�L4 �
L8�L5 � 2, we have obtained Tc � 2.054 6 0.001 and
U�

4 � 0.619 6 0.002.
An alternative method, proposed in [17], allows one to

estimate simultaneously both the critical temperature Tc

and the critical exponent n within the same series of calcu-
lations. The main idea of this approach (the scanning tech-
nique) is to look for a quantity-independent slope of the
set of functions Vl with l � 1, 2, . . . , 6, all of which have
similar scaling behavior. These functions are defined via
the derivatives Kl � ≠Ml�≠b (see, for details, Ref. [17]).
The results are shown in Fig. 1, so that we have Tc �
2.057 6 0.001 and 1�n � 1.396 6 0.006. Note that
within the scanning technique, no corrections to scaling
have been taken into account.

We have also used other known methods [1] to estimate
Tc. One of these (the shifting technique) is based on the
analysis of the size-dependent shift of a peak Tpeak�L�,
observed in some thermodynamic quantities (e.g., specific
heat CV , susceptibility x , derivatives Kl). If corrections
to scaling are neglected, the location of the peak Tpeak�L�
has the general form Tpeak�L� � Tc 1 AL21�n , where A
is a quantity-dependent constant. Note that in order to
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FIG. 1. Quantity dependence of scanning results for the func-
tions Vl possessing the same scaling properties [17]. The hori-
zontal line for Tc � 2.057 is drawn at 1�n � 1.396.

determine Tc one has to estimate accurately the exponent
n as well as the values Tpeak�L�. In the temperature range
considered, well-defined peaks for all the sizes Li have
been observed for the functions ≠M�≠b, Ū3 � �M3 2

3M2M1 1 M3
1 ���M1�M2 2 M2

1 ��, and x3 � N2�M3 2

3M2M1 1 M3
1 � [17,18]. For all these cases, our estimate

of Tc 
 2.058 6 0.002, found with 1�n � 1.396 for the
five largest sizes L, is in agreement with the scanning
technique but not with the crossing technique. Moreover,
the dependence Tpeak�L� versus L21�n showed a pro-
nounced curvature for smaller system sizes L. Hence, the
first puzzle uncovered in our study is the disparity in the
estimates for Tc found using two types of standard FSS
techniques, namely, (i) the crossing technique for Binder
parameter, as well as for the correlation length, and (ii) the
scanning and shifting techniques. This disparity could not
be entirely explained by the error bars and indicates strong
crossover effects. Note that corrections to scaling were
completely neglected in the methods of type (ii). In order
to clarify the cause of the difference found for Tc, the scan-
ning technique was used for the four largest systems only,
giving Tc � 2.054 6 0.001 in agreement with the result of
the crossing method. However, despite the improvement in
Tc, the value 1�n � 1.312 6 0.007 was a deterioration.
This is another puzzle which needs explanation. Taking
everything together these results support the presence of
strong crossover effects in the system considered.

Knowing Tc, one can then estimate the critical expo-
nents again using the FSS theory [1]. We have calculated
the exponent ratios b�n and g�n, the FSS behavior of
M�L, Tc�, and the magnetic susceptibility x�L, Tc�. For
Tc � 2.057, we found b�n � 0.544 6 0.015 and g�n �
1.90 6 0.03, respectively. Nearly the same estimates were
obtained using other FSS methods. Taking Tc � 2.054
for the four largest sizes Li , we obtained b�n � 0.520 6

0.008 and g�n � 1.87 6 0.03. The results for both
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choices Tc � 2.057 and Tc � 2.054 are summarized in
Table I in the first and second lines, respectively, beneath
the “Fluid2” heading. The estimates for 1�n were found
by the scanning technique.

Comparing our results with the previous ones [8], we
conclude that (i) the ratios of critical exponents b�n and
g�n found in our study are closer to the values known for
the lattice model [17,19]; (ii) the critical exponent n is ex-
tremely sensitive to the estimate of critical temperature Tc

used; (iii) even for larger systems, which this study con-
siders, a systematic deviation from the lattice exponents is
seen that cannot entirely be justified by the error bars; and
(iv) the disparity in estimates found for the critical tem-
perature Tc, using the crossing and shifting techniques, has
no explanation within the standard FSS approach. Hence,
our data have to be considered as results for effective ex-
ponents and one can expect that the true asymptotic be-
havior would be visible only for much larger systems. If
nonasymptotic crossover effects are considered, one may
think of the presence of the Wegner correction term. How-
ever, this is expected to be negligible for our largest system
sizes. One has to ask, therefore, what the reason is for such
a strong crossover in the system we considered, compared
to the lattice model.

In order to investigate this problem in more detail let us
recall an idea encountered in the Fisher renormalization [7]
for a system under thermodynamic constraint. According
to this idea, the critical singularities in the grand canonical
ensemble, with fixed chemical potential m, may be dif-
ferent from those describing the system in the canonical
ensemble with fixed density n. One has to perform the cor-
responding Legendre transformation carefully, taking into
account the properties of singular functions in the grand
canonical ensemble. In particular, this gives the well-
known relation [see, e.g., Eq. (2.38a) in [7] ]

t � a0txa �1 1 a1tDa � , (2)

which connects the reduced temperature scales t and t in
the two different ensembles with fixed n and m, respec-
tively. The values of xa and Da in (2) depend on the sign
of the specific heat critical exponent a and are equal to

TABLE I. Summary of results with n being the reduced den-
sity. In the first three rows (denoted as Fluid1) the results from
[8] are given. In the last row the universal quantities known for
the lattice Heisenberg model [17,19] are presented. Our results
are shown in the rows denoted as Fluid2.

U4 1�n b�n g�n

Fluid1

n � 0.4 0.613 1.35(5) 0.55(2) 1.86(3)
n � 0.6 0.608 1.41(3) 0.56(2) 1.85(1)
n � 0.7 0.605 1.42(3) 0.55(2) 1.84(3)

Fluid2

n � 0.6 0.619 1.40(1) 0.54(2) 1.90(3)
1.31(1) 0.52(1) 1.87(3)

Lattice 0.622 1.421(5) 0.514(1) 1.973(2)
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�1 2 a�21 or 1 and a�1 2 a�21 or 2a for a positive
or negative, respectively. It is seen already from (2) that
independent of whether Fisher renormalization changes
the critical exponents in the ensemble with fixed n, a new
type of corrections to scaling appears in the canonical en-
semble. These corrections, being proportional to a, must
not be confused with Wegner corrections to scaling; and
because of the smallness of a in the Heisenberg univer-
sality class, they have to be taken into account within the
FSS analysis. We note also that Eq. (2) is not the only
source [20] for the appearance of new corrections (as was
assumed, e.g., in [21]) in the canonical ensemble. There is
another reason, which also follows from thermodynamics.
For example, using hyperscaling relations for the criti-
cal exponents, it can be easily proved [20] that the sec-
ond term in the known expression xT ,n � �≠M�≠h�T ,n �
�≠M�≠h�m 2 �≠M�≠m�T �≠N�≠m�21

T �≠N�≠h�m produces
an additional correction to the magnetic susceptibility xT ,n
with an exponent proportional to a. Hence, these new cor-
rections to scaling cannot be included in the standard FSS
by means of simple rescaling of t, which follows from (2)
and as was proposed in [21].

In order to prove our predictions and to estimate the
range of asymptotic behavior in which the new correction
can be neglected, we have performed additional calcula-
tions. In Fig. 2 the results, obtained for the temperatures
Tpeak�L�, where the maximums of the functions ≠M�≠b

and x�T , L� are located, are shown for different sizes of L.
These results have been fitted (dashed lines) for the four
largest system sizes by using the expression

Tpeak�L� � Tc 1 AN21�3n�1 1 BN2jaj�3n� , (3)

with the values of 1�n and a known for the lattice model
[17,19]. The quantity-dependent constants A and B were
then estimated. It is seen in Fig. 2 that (i) the fitting curves
are in rather good agreement with the MC data obtained
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FIG. 2. Size dependence of the maximum locations in the
derivative ≠M�≠b (triangles) and susceptibility x�T , L� (dia-
monds). The results of fitting to MC data (dashed curves) are
found using (3) with 1�n and a known for the lattice model.
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even for smaller values of L, (ii) such a simple proce-
dure allows one to understand the strong deviation from
the linear dependence Tpeak�L� � Tc 1 AN21�3n that fol-
lows from (3) when the correction to scaling is neglected,
and (iii) the disparity in estimates found for Tc within the
crossing and shifting techniques can be explained. Using
the fitting procedure, described above, we have found that
the estimate Tc � 2.055 6 0.001 gives a rather good fit
for all the data Tpeak�L�, obtained from the maximum po-
sitions of ≠M�≠b, x�T , L�, Ū3�T , L�, and x3�T , L�. An-
other finding was that in contrast to the strong quantity
dependence of A, the parameter B in (3) is almost inde-
pendent of the quantity considered [22]. Note that if the
rescaling relation (2) is considered as the unique reason
for the appearance of the new correction, then the parame-
ter B is quantity independent. From the fitting procedure
it has been found that B 
 1.3 6 0.2 for all five sets of
Tpeak�L� studied. Having the value of B, we can then es-
timate the minimal number of particles Nmin such that the
correction term in (3) can be neglected if N . Nmin. This
gives Nmin 
 108 [then the relative contribution of the sec-
ond term in the bracket of (3) is less than 0.5], and, there-
fore, it is clear why the true asymptotic behavior could not
be observed earlier [8] or in our MC study. Finite systems
with N . Nmin have not been considered so far in MC
simulations. Hence, only the effective exponents could be
studied for smaller size systems.

In conclusion, we note that if the absolute specific heat
exponent a is small enough, Fisher corrections to scaling
discussed are very important in models with constraints.
At d � 3 a is very small for the Ising, the XY , and the
Heisenberg classes of universality, as well as for other sys-
tems. In particular, we are convinced that the problems
found in the Ising fluid [9,10] have the same origin. In this
respect it is also worth referring the reader to Ref. [23],
where, within the e-expansion scheme, it was proven ana-
lytically that the leading correction to scaling in a com-
pressible Heisenberg magnet as well as in a randomly
diluted, weakly inhomogeneous Heisenberg model is equal
to 2a, and this supports our conclusions. More detailed
results including the determination of the values of the
asymptotic exponents will be given elsewhere.
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