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Using the path integral Monte Carlo technique we show that semiconductor quantum rings with up
to six electrons exhibit a temperature, ring diameter, and particle number dependent transition between
spin ordered and disordered Wigner crystals. Because of the small number of particles the transition
extends over a broad temperature range and is clearly identifiable from the electron pair correlation
functions.
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Nanoscopic semiconductor quantum rings (QRs),
which recently have been experimentally realized by
Lorke et al. [1], are next to quantum wires probably the
best prototypes of quasi-one-dimensional quantum sys-
tems. QRs can be viewed as rotating Wigner crystals with
promising features for application in microelectronics.
They can be modeled using a simple Hamiltonian of the
form
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where k � 12.9 and m� � 0.067me are the material con-
stants of GaAs [2,3]. The parameter r0 is the radius of
the quantum ring and v0 defines the strength of the two-
dimensional potential [1,4]. Figure 1(a) displays the shape
of the ring potential. QRs can be tuned from quasi-one-
dimensional to two-dimensional systems by variation of
the ring diameter and the potential strength.

While mesoscopic QRs have been investigated theoreti-
cally and experimentally in depth [5], nanoscopic rings
with strong quantum effects are of increasing interest.
Koskinen et al. [6] reported configuration-interaction cal-
culations of rotational and vibrational excitations of
nanoscopic QRs with up to N � 7 electrons. They claim
that QRs behave like rather rigid molecules or Wigner
crystals with antiferromagnetic order in the ground state.
Ahn et al. [7] considered stacked nanoscopic rings and
found an N-dependent Stark effect. Experimentally it
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has been found that the emission energies of QRs change
abruptly whenever adding an electron [8].

In this Letter we present the results of path integral
Monte Carlo (PIMC) simulations of single nanoscopic
QRs with up to eight electrons and different radii r0. We
show that they undergo a temperature, radius, and particle
number dependent spin order-disorder transition. Further-
more, the influence of quantum effects on the spatial elec-
tron distribution as well as the addition energies DE are
given. Our results for the addition energies, i.e., the en-
ergy that is needed to place an additional electron in a
ring, is compared to the experimental results of Warburton
et al. [8].

In contrast to Hartree-Fock and spin density functional
theory PIMC samples without any approximation the full
many body wave function instead of single or sums of
Slater determinants. Especially for highly correlated elec-
tron systems this is a major advantage of PIMC. Another
benefit of PIMC is the possibility to study temperature
dependent phenomena. For quantum dots the problems
of different density functional approaches have intensively
been discussed in the past [2,9–11]. The so-called fermion
sign problem is still a topic of actual research and restricts
the application of PIMC to a limited number of fermions
and for QRs to a temperature of at least 10 K.

The Feynman path integral for an N-electron system
with position eigenket j ri , si� (si � 6

1
2 for spin-up and

spin-down electrons) in an external potential can be rewrit-
ten as [12]
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and the boundary condition rj�M 1 1� � rj�1�. For M ! ` Eq. (2) becomes exact. Standard Metropolis Monte Carlo
(MC) techniques can be utilized to evaluate the integral in (2).

The basic quantities reflecting the spatial structure of the electron configuration are the electron-electron (distance) pair
correlation functions Gi,j�r� � �d�r 2 j rij j��, the angular pair correlation functions Gi,j�w� � �d�w 2 jwi 2 wj j��,
and the radial electron density ri�r� �

1
2pr �d�r 2 j ri j��, from which all energies can be calculated using the hypervirial
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FIG. 1. Potential energy surface of a semiconductor quantum
ring (a) and schematic illustration of the definition of w (b).

theorem (for details of our method see [10]). The defi-
nitions of w and rij are illustrated in Fig. 1(b). To take
the particle symmetry into account we introduce Gij � G"#

for si fi sj , Gij � G"" for si � sj �
1
2 , and Gij � G##

for si � sj � 2
1
2 , respectively. Obviously for S � 0 we

have G## � G"".
In our simulations we controlled the systematic error

arising from the limited number of time slices M and the
statistical MC error carefully. By choosing M 3 T � 600
and using up to 10 3 1010 MC steps per run we pushed the
overall error of all energy expectation values below 0.3%.
Our FORTRAN code is completely parallelized using MPI
and Lapack, and most calculations have been performed
on a Cray T3E with 64 processors.

We fixed the strength of the harmonic potential
h̄v0 � 12 meV, resulting in effective atomic units for
the Hartree energy E�

H � 10.995 meV and the Bohr
radius a�

0 � 10.1886 nm. A ring diameter r0 � 14 nm �
1.37a�

0 then corresponds to the experimental setup of Lorke
et al. [1]. To investigate the ring size dependence we per-
formed additional calculations for r0 � 50.94 nm � 5a�

0 .
Figures 2(b) and 2(c) display the pair correlation func-

tions of QRs with N � 6, S � 0, and ring diameters
r0 � 1.37a�

0 and 5.0a�
0 at T � 15 K. As expected for

both diameters peaks at w � p�3 and w � 2p�3 occur
in G�w�. For r0 � 5a�

0 the angular pair correlation func-
tions for electrons with equal and unequal spin are almost
identical; i.e., the Pauli principle does not play an impor-
tant role in this case. In contrast, for r0 � 1.37a�

0 the pair
correlation functions show a strong spin dependence. The
electrons arrange on the ring with antiferromagnetic order.
Such spin density waves have been predicted by Koski-
nen et al. [6,11]. The role of quantum effects is reflected
as well in Fig. 2(a). For the smaller ring size the radial
electron density is much broader and nonvanishing at the
ring center, implying that the system does not behave like
a quasi-1D system. In a perfect hexagonal Wigner crystal
the equilibrium distances of the electrons would be r � 1,
1.73, and 2.0r0. For r0 � 5.0a�

0 the distance pair corre-
lation function is approximately a properly weighted su-
perposition of Gaussians centered at these distances. For
r0 � 1.37a�

0 the pair correlation function depends on the
total spin of a pair and is broadened up to 4r0. From
Figs. 2(b) and 2(c) we infer that the most probable configu-
ration is one where the electrons are ordered on a zigzag
line around the circle; i.e., the electrons arrange alternately
in the inner and the outer parts of the ring.

Figure 3 displays the angular spin density pair cor-
relation functions for both ring diameters, temperatures
T � 15, 30, and 90 K, and particle numbers N � 4 and
6. In all cases the large angle correlations disappear with
increasing temperature and at T � 90 K only at small an-
gles a spin correlation is still visible. For r0 � 5.0a�

0 the
negative correlation at small angles increases with increas-
ing temperature. However, this is simply due to the fact
that the values of both correlation functions at small an-
gles become larger with increasing temperature. The spin
correlations for the small ring are about 1 order of magni-
tude larger than those in the ring with radius r0 � 5.0a�

0
(note the different scalings of the abscissas). A compari-
son between N � 4 and N � 6 shows that the spin corre-
lation is smaller for the larger system. A probable reason
for this is that for N � 6 the contribution of the Coulomb
repulsion is much larger (see Table I) freezing the elec-
tron in the Wigner crystal and — thinking in the picture of
one-particle wave functions —making the overlap between
one-particle wave functions smaller.

In summary, from Fig. 3 it can be inferred that a
spin order-disorder transition appears with increasing
temperature, increasing electron number, and increasing
ring size.
FIG. 2. Radial electron density (a), radial (b), and angular (c) pair correlation functions for N � 6, S � 0, and r0 � 1.37a�
0 and

5a�
0 at T � 15 K.
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FIG. 3. Angular spin density correlation function �G""�w� 2
G"#�w�	 for T � 10, 30, and 90 K and (a) N � 4, S � 0, and
r0 � 1.37a�

0 , (b) N � 6, S � 0, and r0 � 1.37a�
0 , (c) N � 4,

S � 0, and r0 � 5a�
0 , and (d) N � 6, S � 0, and r0 � 5a�

0 .

Next we consider the temperature dependence of the
spin order-disorder transition in some more detail. Fig-
ure 4 displays the mean values of the angular separation of
the electrons with equal and unequal spin for N � 4 and
6, S � 0, and r0 � 1.37a�

0 as a function of temperature.
As expected from the results presented above, the over-
all differences between the expectation values for equal
and unequal spins approach zero with increasing tempera-
ture; i.e., the Pauli principle becomes less important. In
addition, the values for N � 6 are smaller than those for

TABLE I. Total, kinetic, potential, ring, and Coulomb energies
for N � 4 and 6, S � 0, r0 � 1.37a�

0 and 5a�
0 for different

temperatures. All energies are given in meV.

N r0�a�
0� T �K� Etot Ekin Epot Ering Ec

4 1.37 10 57.2 23.0 34.2 16.1 18.1
25 59.3 24.4 35.0 16.8 18.2
90 85.1 40.6 44.4 26.5 17.9

5 10 32.7 15.0 17.7 11.4 6.3
25 36.1 17.7 18.4 11.6 6.8
90 62.0 35.4 26.6 18.5 8.1

6 1.37 10 117.8 39.4 78.4 31.1 47.3
25 122.5 42.6 79.9 32.9 46.9
90 160.9 66.7 94.2 48.4 45.8

5 10 61.0 25.3 35.7 17.3 18.3
25 65.7 28.8 36.9 17.8 19.1
90 105.8 55.3 50.6 29.1 21.5
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N � 4. Obviously, this is because the available portion
per particle of the ring volume is smaller for a larger num-
ber of electrons and the Coulomb repulsion is unable to
disperse the particles. At T � 10 K and N � 4 the con-
tribution of the Coulomb term to the total potential energy
is 53% for r0 � 1.37a�

0 and only 36% for r0 � 5a�
0 , while

for N � 6 the difference between the different diameters
is with 60% and 51% substantially smaller (see Table I).

The slope of �w"#� for N � 4 can be understood as fol-
lows. Up to 40 K �w"#� increases due to spin disordering.
At higher temperatures �w"#� decreases due to increasing
thermal fluctuations.

Finally, we calculated the second energy differences
DE � EN11 2 2EN 1 EN21, also called addition ener-
gies, which are an indicator of the stability of a quantum
ring with a given number of electrons. For quantum dots it
was claimed that the electron configurations are given by
Hunds rule [11] and consequently magic numbers occur at
N � 2, 6, 12, and 20. Here we calculated only the addi-
tion energy up to N � 7 for 25 K and N � 5 for 10 K. As
expected due to the Pauli principle and the Wigner crys-
tal structure, a strong odd even effect occurs. The general
behavior of this effect does not change for 25 K. How-
ever, for higher temperatures significant differences can be
expected (see above). Warburton et al. [8] argued that the
general features of shell effects occurring in QRs are the
same as in quantum dots. As can be inferred from Fig. 5,
our calculations confirm this for N � 6. Furthermore,
the addition energies are in the same range as those from
photoluminescence measurements at 4 K [8]. Because
of the strong Coulomb repulsion in QRs, which grows
with increasing electron number, it can be expected that
shell effects become less important with increasing particle
number.

The effects described above are reflected quantitatively
in Table I presenting the total energy (Etot), kinetic energy
(Ekin), total potential energy (Epot), the energy due to the
ring potential (Ering), and the Coulomb energy (Ec).

FIG. 4. Temperature dependence of the mean angles �f""� and
�f"#� for N � 4 and 6, S � 0, and r0 � 1.37a�

0.
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FIG. 5. Addition energies DE at temperatures T � 10 and
25 K for r0 � 1.37a�

0 .

In conclusion, we presented the results of full many
body wave function calculations for QRs with up to eight
electrons. We found that the properties of the rings depend
in an intriguing manner on the ring diameter, the particle
number, and the temperature, which in turn is due to spin
correlation, Coulomb ordering, and the general strength of
quantum effects. QRs exhibit a parameter dependent spin
order-disorder transition. By variation of the ring diameter
the system can be tuned from a quasi-1D Wigner crystal
to a 2D structure. The accessible parameter ranges can
be used to tune the properties of quantum rings to desired
values. Because of the ring diameter as an additional pa-
rameter, this qualifies them as even better candidates than
quantum dots for possible applications in microelectron-
ics. The addition energies calculated using PIMC are in
good agreement with the experimental results of Warbur-
ton et al. [8] and reflect the predicted shell effects.
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