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Rate-Equation Approach to Island Capture Zones and Size Distributions in Epitaxial Growth
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Understanding and predicting the effects of correlations between island size and the rate of monomer
capture has been shown to be the central problem in predicting the island-size distribution in submono-
layer growth. Here we summarize a method which involves a self-consistent coupling of evolution equa-
tions for the capture-zone distributions with rate equations for the island-size distribution. The method
has been successfully applied to irreversible submonolayer growth in both one and two dimensions
to predict the size-dependent capture numbers and island-size distributions.
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Cluster nucleation and growth by aggregation is the
central feature of many physical processes, from polymer-
ization and gelation in polymer science, flocculation and
coagulation in aerosol and colloidal chemistry, percolation
and coarsening in phase transitions and critical phenom-
ena, agglutination and cell adhesion in biology, to island
nucleation and thin-film growth in materials science [1].
Detailed information about the kinetics of aggregation is
provided by the time-dependent cluster-size distribution, a
quantity which can be measured experimentally [2]. Based
on the von Smoluchowski rate equations [3], considerable
theoretical effort has been made toward a better under-
standing of the mechanisms determining the scaling prop-
erties of aggregation phenomena [4].

While the standard rate-equation (RE) approach has
been successful in predicting the scaling behavior of av-
erage quantities such as the total cluster density, when
there are significant spatial fluctuations it gives predic-
tions which are in significant disagreement with both ex-
periments and kinetic Monte Carlo (KMC) simulations
[5-8]. This failure can be traced to the fact that the usual
mean-field approach does not include correlations between
the size of an island and its local environment [6—8]. Such
correlations are especially important in lower dimensions,
such as in cluster growth on surfaces.

In this Letter, we outline a new method for calculating
the cluster-size distribution which solves the long lasting
problem [9,10] of determining the correlations between the
size of an island and that of its capture zone. Applying this
method to submonolayer epitaxial growth, we show that
by coupling a set of evolution equations for the capture-
zone distributions with a set of rate equations for the island
densities one may obtain accurate predictions for the time-
and size-dependent rates of monomer capture. In particu-
lar, we show that by using this method one can obtain
excellent results for the capture numbers and island-size
distributions in irreversible growth on both one- and two-
dimensional substrates.

The rate-equation approach to submonolayer nuclea-
tion and growth involves a set of coupled diffusion-
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aggregation equations [3,11] describing the time
(coverage) dependence of the average densities of
monomers, N, and of islands of size s = 2, Ny (s being
the number of atoms in the island). For the case of
irreversible growth with immobile clusters, a general form
of these equations may be written

dN
=l — 9y —2N; = 2Ro\N? = RN, D o,N;, (1)
do s=2

dN;,

40 = RNI(O-s—le—l - O-SNS) + ky—1Ng—1 — ksNj

fors=2. (2

Here, 6 is the coverage, R = D /F corresponds to the ratio
of the monomer diffusion rate D to the deposition flux F,
and the factor y represents the fraction of the substrate
not covered by islands. The terms with o describe the
rate of monomer capture by other monomers or by existing
islands, while the terms with k, (where k; = 59/, d is the
substrate dimension, and d is the fractal dimension of the
islands) correspond to the deposition of adatoms directly
on islands of size s.

In order to use (1) and (2) to predict the island-size
distribution Ng(6) during submonolayer growth, the
coverage and size-dependent capture numbers o75(6) must
be determined. As shown in Fig. 1, for the case of a two-
dimensional substrate we assume that each island of size
s is surrounded by a local capture area or “exclusion”
zone, Agx, in which only monomers may be found. For
simplicity, the island is replaced by a circle of radius Ry,
while the exclusion zone is assumed to be a circle of
radius Rex = +/Aex/7 as shown in Fig. 1(b). Inside the
exclusion zone, monomer diffusion is characterized by
the average monomer nucleation length £, while outside
the exclusion zone, the collection of islands and monomers
is represented by a “smeared” distribution corresponding
to an average monomer “decay” length £. We assume
that the exclusion zone area is directly proportional to
the Voronoi-cell area Ay, i.e., Aex = nAy, where 7 is a
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FIG. 1. Schematic diagram showing (a) two-dimensional
islands with Voronoi cells (b) corresponding exclusion zone
geometry.

coverage-dependent geometrical factor (typically larger
than 1) which is the same for all islands.

Taking into account the effects of nucleation and growth
of islands on the distribution, and ignoring the breakup
(fragmentation) of Voronoi cells when new islands are nu-
cleated, we can write down a set of evolution equations for
the Voronoi-cell distribution in the form,

% = (dN/d0)6(A — Ay)
— RN,52(A)G1(A;0), 3)

% — RN\[6,1(A)Gs_1(A: 0)
- &s(A)Gs(Aae)] (S = 3), (4)

where G,(A; ) is the number density of islands of size s
surrounded by a Voronoi cell of size A, and (A) is the
corresponding “local” capture number. The first term on
the right side of Eq. (3) corresponds to island nucleation,
while the remaining terms in (3) and (4) correspond to
the growth of islands via aggregation. In these equations
we have assumed that at coverage # the nucleation events
produce, on average, new cells whose average Voronoi area
is just the average area per island A,y = 1/N (where N =
D> =, N, is the average island density at that coverage)

and for simplicity the “source” term in Eq. (3) has been
assumed to take the form of a delta function. For the
description to be consistent, the local capture numbers &
in (3) and (4) must be related to the capture numbers o
in the rate equations (1) and (2) by o = (74(A))G,(1)-
As a result, the problem has been reduced to determining
the Voronoi-cell distribution G,(A; #) and the local capture
numbers 7.

In principle, Egs. (3) and (4) can be numerically
integrated once explicit expressions for the local capture
numbers &(A) are known. However, if the local capture
number &,(A) has no explicit dependence on the island size
s, then an analytic solution can be obtained. We therefore
consider the mean-field approximation &(A) = &s(A)
[where S = (6 — Ny)/N is the average island size]. For
the case of point islands (i.e., islands with no spatial
extent) this approximation is exact, since in this case
there is no explicit size dependence of the local capture
numbers.

Changing the coverage variable to x4 =
[, RN1(¢)3s(A)d¢p [where 1/N(64) = A defines
04] and using the generating function g(xa,u) =
Zfzz G,(x4; A)u*~? one obtains the general solution [12],

Gs(A;x4) = A_2xf‘_ze_"*‘/(s - (s=2). (B

Beyond the nucleation regime, the average Voronoi area
A,y as well as x4 and the average island size S, is typically
large. Thus, in the aggregation regime the Voronoi-area
distribution G(A; @) corresponds to a sharply peaked dis-
tribution as a function of A whose peak position A; satisfies
xi, = s — 2. Because the effects of breakup of Voronoi
cells due to nucleation have been neglected in (3) and (4),
these values must be rescaled so that the average Voronoi
area is equal to Ay, = 1/N (in the case of extended
islands additional geometrical corrections are included) as
described in detail in [12,13]. Accordingly, the capture
numbers are approximated by o5 = (A}), where A is
the rescaled and corrected Aj.

The calculation of the local capture numbers & is simi-
lar to the self-consistent scheme developed by Bales
and Chrzan [14] and basically consists of comparing the
microscopic capture rate of monomers by an island of size
s with the rate-equation-like “capture” term DN (A).
To determine the microscopic capture rate, one has to self-
consistently solve a quasistationary diffusion equation
whose form and solution depend on the dimensionality
and geometry of the system [12—14]. As an example, we
will outline the calculation in the two-dimensional case.

Defining the monomer “nucleation” length &; 2=
201N, and the monomer decay length &2 = & 2 4
> =» 0sNj, the diffusion equation satisfied by the local
monomer density surrounding an island of size s on a
two-dimensional substrate is

) 2
2 — é:l [nl - a (NI/Y)]’ Ry < r < Re,
vom {fz(nl — Ni/vy), Rex <r <o, ©
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where n1(r) is the local monomer density a distance r from
the center of the island, R, = psl/d/, Rex = v/mAy/m,
and a? = (£,/€)?. Here p is a “geometrical” prefactor
which accounts for the circular approximation of the island
area, and the fractal dimension d; depends on the morphol-
ogy of the island. The explicit solution of Eq. (6), with
appropriate boundary conditions for irreversible growth,
is used to determine the local capture number G,(A4) =
(27mR,/N1)(0n1/dr)g, for s = 2. The monomer capture
number o is also obtained by taking the limit of no ex-
clusion zone, i.e., Rex = R;. After choosing a reasonable
value for p, the decay length ¢ and the geometrical pre-
factor i are self-consistently obtained by requiring that
the capture-number condition, £ 72 = &, 2 4+ > =0 0Ny
and monomer-density condition that the average monomer
density in all the Voronoi cells must equal Ny, are satisfied
at all coverages [13].

We have numerically integrated the island-density rate
equations (1) and (2), coupled with the solution of the
Voronoi-area evolution equations (3) and (4) as described

1.2 - (a) '

[
Point

Islands (2d)

f(s/S)

/o

s/S

FIG. 2. Scaled island-size and capture-number distributions for
point islands on a two-dimensional substrate (R = 0.25 X 108).
KMC results in (b) are from [7].
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above, in order to calculate the scaled island-size distribu-
tions f(s/S) = (S?/0)N,(#) and scaled capture-number
and capture-zone distributions for the case of irreversible
growth on both one- and two-dimensional substrates. Fig-
ure 2 shows typical results for the case of point islands in
two dimensions. As can be seen, there is excellent agree-
ment between the calculated scaled island-size distribution
f(s/S) (solid line) and kinetic Monte Carlo simulations
(symbols), in contrast to the corresponding mean-field
(MF) prediction (dashed line). The corresponding RE pre-
diction for the scaled capture-number distribution o5/,
is also in good agreement with the KMC simulation re-
sults [7], as shown in Fig. 2(b). The small discrepancies
which occur at large s/S have a negligible effect on the
island-size distributions because the island density N is
already small in that region.

Excellent agreement between the RE predictions and
simulations has also been obtained for the case of com-
pact islands (dy = 2) as shown in Fig. 3. As for point
islands, the reason for this is that the explicit inclusion of
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FIG. 3. Same as Fig. 2 but for compact islands (d; = 2).
Open symbols in (b) are experimental results from [8] for
Cu/Co on Ru(0001) (diamonds) and for Ag/Ag(100) (circles).



VOLUME 86, NUMBER 14

PHYSICAL REVIEW LETTERS

2 APrIL 2001

T T T T T T
12 r (a) I Point

Islands (1d)

6=1.0

f(s/S)

A' /A

0.5 . | . | e
0 1 2 3
s/S

FIG. 4. Scaled island-size and capture-zone distributions for
point islands on a one-dimensional substrate (R = 0.5 X 107).

size correlations in the rate equations has led to correct
expressions for the capture zones and capture numbers.
As shown in Fig. 3(b), our RE predictions for the scaled
capture-number distribution for compact islands are in very
good agreement with experimental results for two different
materials and growth conditions from [8].

Similar good agreement for both point and extended
islands (dy = 1) has also been obtained for irreversible
growth in one dimension, although the details of the cal-
culation of the capture zones and numbers are somewhat
different due to the existence of strong spatial fluctuations
[12]. Typical results for the cluster-size and capture-zone
distributions for growth on a one-dimensional substrate are
shown in Fig. 4 for the case of point islands.

In conclusion, we have developed a fully self-consistent
rate-equation approach to irreversible submonolayer
growth in the precoalescence regime. In our method, the
existence of a denuded (capture) zone with a fluctuating
area around every island and the correlations between the

size of the island and the corresponding average capture
zone are explicitly taken into account. This has led to
RE results for the island-size distribution, capture zones,
and capture numbers in very good agreement with ex-
perimental results and KMC simulations. The basic idea
of coupled evolution of the capture zones and densities
included in the present approach may be used in the rate-
equation modeling of a wide variety of problems in which
cluster nucleation and growth by aggregation involves
strong correlations between the rate of aggregation and
the size of the capture zone.
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