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Kelvin Waves Cascade in Superfluid Turbulence
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We study numerically the interaction of four initial superfluid vortex rings in the absence of any
dissipation or friction. We find evidence for a cascade of Kelvin waves generated by individual vortex
reconnection events which transfers energy to higher and higher wave numbers k. After the vortex recon-
nections occur, the energy spectrum scales as k21 and the curvature spectrum becomes flat. These effects
highlight the importance of Kelvin waves and reconnections in the transfer of energy within a turbulent
vortex tangle.
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When studying a physical system which is dynami-
cally complex, an important issue to consider is the ef-
fect of nonlinearity on the distribution of energy over
the degrees of freedom of the system. For example, in the
case of a classical viscous flow, the nonlinear terms of the
Navier-Stokes equation redistribute the energy over vari-
ous scales of motion without affecting the total energy bud-
get, and the celebrated Richardson cascade of eddies leads
to Kolmogorov’s k25�3 dependence of energy on wave
number k. The aim of our Letter is to describe a form
of energy cascade of helical waves on vortex filaments
(Kelvin waves). Our argument is that vortex reconnec-
tions leave behind regions of high curvature which generate
Kelvin waves. Nonlinear interactions between these waves
transfer energy to higher Kelvin wave numbers k0. We use
the term “Kelvin wave number” to distinguish between
this wave number k0 (the wave number along the vortex
filament) and the magnitude k � jkj of the wave vec-
tor k of the Fourier spectrum of three-dimensional space
x, y, z. We investigate the Kelvin wave cascade process
through direct numerical simulations of vortex filament dy-
namics and show that this wave cascade is clearly visible
in the spectra of vortex line curvature, torsion, and line
velocity.

Our results apply directly to the study of turbulence in
helium II, which manifests itself as a tangle of superfluid
vortex filaments [1–11]. A superfluid vortex filament is
well described by the classical [12] theory of vortex fila-
ments because the vortex core radius a � 1028 cm is mi-
croscopic and the circulation G � 9.97 3 1024 cm2�sec
is fixed by quantum constraint. We represent a vortex fila-
ment as a curve s � s�j, t� in three-dimensional space
(where j is arclength and t is time) [13]. At each posi-
tion s along a filament we define the unit vectors t̂, n̂, and
b̂ along the tangent, normal, and binormal directions, re-
spectively, the local curvature c�j� � js00j and the torsion
t�j� � jb̂0j, where a prime denotes derivative with respect
to arclength. The curve moves with velocity vL at the point
s given by
0031-9007�01�86(14)�3080(4)$15.00
vL �
ds
dt

�
G
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Z �r 2 s� 3 dr
jr 2 sj3

. (1)

In writing (1) we neglect the friction against the nor-
mal fluid component; that is to say we concentrate our
attention to low temperature superfluid turbulence [2,7].
Equation (1) is used with the extra assumption that vortex
filaments reconnect when they approach each other at a
sufficiently short distance; this assumption was proved
[14] by using the Gross-Pitaevskii (GP) model of a Bose-
Einstein condensate. The GP model reduces to our Euler
vortex filament model when variations of the wave function
over scales of the order of the superfluid healing length j

are neglected (j � a� . Our numerical method is described
with more detail elsewhere [15,16]. Our reconnection tech-
nique is standard [7,13,17] and is based on the great sepa-
ration of scale between the vortex core a � 1028 cm and
the minimum scale d � 1023 cm which is resolved nu-
merically, and the large separation between the reconnec-
tion time scale a�c � 10212 sec, where c is the sound
speed, and the time step Dt � 1024 sec. When vortex
filaments (discretized into points) approach each other by
less than a distance d, reconnection is performed instanta-
neously by switching the labels which tell which point is
linked to which. The time step Dt is chosen so that Dt ,

Vpd � 0.5 3 1023 sec where Vp is the velocity of the
Kelvin wave with the highest wave number k0

max � d�2 �
500 cm21 which we define using the minimum scale d and
v � Gk02��4p� �ln�2��k0a�� 2 0.5772� is the angular ve-
locity of the wave.

Our calculation begins with four superfluid vortex rings
placed on opposite sides of a cube (Fig. 1) and oriented
so that they all move toward the center [18]. Unlike
other more complex configurations [7,10], this configura-
tion is simple enough to investigate the effects of an indi-
vidual reconnection. The four rings approach each other
and undergo four symmetric reconnections at time tc �
0.059 sec. Each reconnection introduces a cusp which then
relaxes, generating large amplitude Kelvin waves. As time
© 2001 The American Physical Society
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FIG. 1. Vortex configurations at t � 0.0 sec (initial state, 576 points used; the vortex rings have a radius of 0.023 cm and the cube
has size of 0.0639 cm), t � 0.059 sec (first reconnection), t � 0.69 sec (note the Kelvin waves), and t � 0.129 sec (927 points
used; note the crinkled shape of the filaments).
proceeds, the vortex filaments assume a crinkled shape be-
cause there is no friction with the normal fluid to smooth
small scale waves [7]. During the approach of the vor-
tex rings to reconnection very little vortex wave is visible
on the rings. Since vortex lines approaching reconnection
tend to twist to an antiparallel orientation, our initial con-
ditions in which the vortices are approaching each other in
an antiparallel manner may be preventing the generation of
strong vortex waves before reconnection, hence isolating
the effects of reconnections.

Since our model is incompressible there is no loss of
energy by the generation of sound either during the recon-
nection event itself or as an effect of the motion of the
filaments [19]. In a real system these processes would rep-
resent dissipation processes even in a pure inviscid super-
fluid at absolute zero temperature. The loss of vortex
energy to sound emission will be most effective at some
high Kelvin wave numbers ksound [6]. We need therefore
a mechanism to transfer energy to high Kelvin wave num-
bers. We show in this Letter that isolated (and rare) recon-
nection events along with the nonlinear transport of energy
between wave modes provide this mechanism.

To study this energy transfer we first consider the spec-
trum EV �k� of the superfluid velocity field vs, hereafter
referred to as the energy spectrum (or the spectrum of the
Eulerian velocity) which is such that

rs

2

ZZZ
y2

s �x, y, z� dx dy dz �
Z `

0
EV �k� dk , (2)
where rs is the superfluid density. The results of this cal-
culation are shown in Fig. 2. Isolated and straight vortex
filaments have a 1�r velocity field and thus have a k21 en-
ergy spectrum. For our initial conditions of four large rings
the energy spectrum shows approximately an exponential
behavior (see the two bottom curves of Fig. 2). After the
reconnections occur and the reconnected vortex lines begin
to move farther apart, the energy spectrum develops ap-
proximately a k21 form (see the two top curves of Fig. 2).
The energy spectrum in the high k region rises after the
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FIG. 2. Velocity spectra EV �k� before the reconnections
(lower two curves at t � 0.0 sec and t � 0.030 sec) and after
the reconnections (upper two curves at t � 0.069 sec and t �
0.089 sec). The spectra are obtained by discretizing the
computational box into 643 mesh points.
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reconnections, directly illustrating the transfer of energy
to high k values by the reconnection events (an estimate
of ksound from Vinen’s theory [6] gives an order of mag-
nitude ksound . 102 cm21 consistent with the high end of
our spectrum). The energy spectrum after reconnection has
the same k21 form of the spectrum of an isolated vortex
filament. This is a bit unfortunate since it is difficult to
distinguish the exponential form and the k21 form at in-
termediate values of k, so the shape of EV �k� is relatively
unaffected by the cascade.

To study this energy transfer in more detail and confirm
the Kelvin wave cascade, it is more instructive to consider
the curvature spectrum

1
2

Z
c2�j� dj �

Z `

0
EC�k0� dk0, (3)
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FIG. 3. Curvature spectra EC�k0�. (a) t � 0.069 sec; (b) t �
0.089 sec; (c) t � 0.109 sec.
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where the right-hand-side integral is taken over the Kelvin
wave number k0. The spectrum EC�k0� is initially a delta
function (representing the curvature of the four rings) and
it remains a sharp function until the time tc of the recon-
nection event. Curvature spectra at different times t . tc

are shown in Fig. 3. As soon as the reconnection takes
place EC�k0� becomes nonzero at all Kelvin wave num-
bers, so two energy transfer mechanisms are operating: the
instantaneous transfer of energy to a wide range of curva-
tures by the reconnection event and the following redistri-
bution of that energy by nonlinear interactions. The effect
of the reconnection is nonlocal in curvature space while
the nonlinear wave interactions are primarily local interac-
tions, exchanging energy between neighboring wavelength
scales [20].

Given enough time for the nonlinear interaction between
the Kelvin waves to equilibrate in some statistical sense,
the spectrum EC becomes constant (Fig. 3c). It takes some
time to reach this equilibration, and during this process
the plateau region of the spectrum followed by a roll-off
spreads from low k0 to high k0 due to the local nature of
the Kelvin wave cascade. Figure 3 shows that it takes
only a short time (�0.03 sec after the reconnection) to
reach this equilibrium value over a significant range of the
spectrum. This indicates that the nonlinear interaction of
the Kelvin waves is not weak and cannot be ignored in
theories of superfluid turbulence. Note that the roll-off is
well resolved and occurs at wave numbers much lower than
the limit k0

max which cause the spectrum to terminate due
to the finite resolution.

Why should EC�k0� be constant? The parameters of
the system are G, rs, the characteristic vortex separation
distance �, and the rate of vortex energy dissipation esound
to sound emission at high Kelvin wave numbers ksound
and above. If an equilibrium cascade of Kelvin waves is
achieved [6] in the range �21 ø k0 ø ksound then we
argue that the large and small scale parameters � and
esound do not affect EC�k0� in that range; hence EC�k0� �
EC�rs, G, k0�. The curvature spectrum EC�k0� is dimen-
sionless —see (3)— and dimensional constraints imply
that EC�k0� must be independent of rs, G, and k0 and
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FIG. 4. Torsion spectrum ET �k0� at t � 0.109 sec.
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FIG. 5. Lagrangian velocity spectrum EL�k0� at t � 0.109 sec.

be simply equal to a dimensionless constant. Figure 3
confirms this. An identical dimensional argument can be
made that the spectrum ET �k0� of the torsion is also equal
to a dimensionless constant in the Kelvin wave cascade
range of wave numbers, and evidence for this is given in
Fig. 4. The spectrum EL�k0� of the (Lagrangian) velocity
vL is such that

1
2

Z
y2

L�j� dj �
Z `

0
EL�k0� dk0. (4)

Because yL � Gc to the leading approximation [13], and
because EC does not depend on k0, neither does EL, and in
fact EL 	 G2. Figure 5 confirms that EL does not depend
on k0.

We now consider the energy spectrum EV �k�. Vinen
[6] introduced a “smoothed” length of vortex line per unit
volume, obtained after all the Kelvin waves have been
removed, and considered EK �k0�dk0, the energy per unit
length of the smoothed vortex line associated with Kelvin
waves in the range k0 to k0 1 dk0. By dimensional analy-
sis he found that EK �k0� 	 rsG

2k021. We notice that, be-
cause the fluctuations of the velocity field are induced by
the Kelvin wave fluctuations on the filaments, it is rea-
sonable to expect that EV �k� 	 EK �k0� with k 	 k0. Be-
cause the length of smoothed vortex lines scales with �, we
have EV �k� 	 �EK �k0�. Using Vinen’s result, we obtain
EV 	 �rsG

2k21, in agreement with the k21 dependence
observed after reconnections in Fig. 2.

In conclusion we have found direct numerical evidence
of the cascade process in the interaction of Kelvin waves
directly after individual reconnection events on vortex
filaments. The effect of this cascade on the spectra for
curvature, vortex line velocity, and torsion is strong. The
computed spectra confirm our scaling arguments. These
results highlight the importance of reconnections and
Kelvin waves on the transfer of energy within a turbulent
superfluid vortex tangle. This work should also stimulate
more efforts in the development of micro-instrumentation:
existing measurements of velocity spectra [5] cannot yet
resolve the small scales under discussion here, due to the
relative large size of the probes.
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