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The asymmetric Bragg diffraction microscope is a novel x-ray microscope which forms a magnified
in-line near-field hologram by asymmetric reflection from two crossed flat crystals. In this paper, the
optics of the microscope is studied theoretically. The optical transfer function is obtained, and the
limiting spatial resolution, rated at 25% modulation transfer, is determined to be 0.30 mm at an optimum
magnification of 893 with Si crystals, over a wide range of hard x-ray wavelengths. Absorption and
phase contrast images can be computed from holograms acquired at several object distances. Application
to submicrometer resolution hard x-ray microtomography is envisioned.
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A quest to achieve 1 mm spatial resolution in hard x-ray
�*10 keV� microtomography using synchrotron radiation
has spurred the development of detectors optimized for
high resolution at the expense of detection efficiency. Cur-
rently, a state-of-the-art high resolution detector offers
0.8 mm resolution and 3% detection efficiency at 14 keV
[1]. Even if a higher resolution detector could be devel-
oped, its efficiency might be too low to be generally useful,
since low efficiency results in relatively noisy images or
long exposures, and the latter may be impractical or pro-
duce excessive radiation damage in the object under study,
particularly for biological materials.

A promising approach to achieve submicrometer reso-
lution is to magnify the image with an x-ray optic and de-
tect it with a low resolution, high efficiency detector, thus
improving both resolution and efficiency. The optic must
have submicrometer resolution, as well as adequate magni-
fication, efficiency, and image fidelity. Only recently, two
hard x-ray optics have demonstrated submicrometer reso-
lution �0.3 mm�: Fresnel zone plates [2,3] and parabolic
compound refractive lenses [4]. However, they have not
yet been used in hard x-ray microtomography.

One x-ray optic, the flat asymmetrically cut crystal
[5], has been used in hard x-ray microtomography [6–9],
but has not demonstrated submicrometer resolution. This
optic originated in the field of x-ray diffraction, and its
basic imaging properties, e.g., its limiting resolution, have
been previously unknown. The purpose of this paper
is to theoretically determine its imaging properties, and
show they are conducive to performing submicrometer
resolution hard x-ray microtomography with synchrotron
radiation.

Bragg diffraction from an asymmetrically cut crystal
produces one-dimensional magnification. In the simple
case of coplanar diffraction [10] shown in Fig. 1, the mag-
nification direction lies in the plane of diffraction [11]
and the magnification factor is sin�uB 1 a�� sin�uB 2 a�,
where uB is the Bragg angle and a is the angle between
the Bragg planes and surface. A second diffraction from
another crystal with the same magnification factor but
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perpendicular plane of diffraction produces uniform two-
dimensional magnification.

One-dimensional image magnification was first demon-
strated by Kohra [12], who produced radiographic and
topographic images at magnifications up to 5.53, using
CuKa radiation (8.0 keV). Compound one-dimensional
magnification by double reflection in a grooved crystal was
demonstrated by Bonse et al. [13], who obtained a resolu-
tion of 150 lp�mm (lp stands for line pair and represents a
cycle of a spatial frequency) at 10% modulation transfer,
using 8.23 (total) magnification and 10.3 keV synchrotron
radiation. One-dimensional magnification was applied to
computed tomography by Sakamoto et al. [6], Bonse et al.
[7], and Nagata et al. [8], using synchrotron radiation.

Two-dimensional image magnification was first demon-
strated by Boettinger et al. [14], who used two crystals
with perpendicular planes of diffraction to produce 253

images with CuKa radiation. Another setup for two-
dimensional magnification using only one crystal (but
still two diffractions) was demonstrated by Korytar [15],
who produced 63 images with CuKa radiation. For the
latter setup, the problem of finding a pair of surfaces
which produce images free of shear distortion was solved
analytically by Dobrocka [16].

Using the above two-crystal setup, 793 magnification,
and 12.3 keV synchrotron radiation, Kuriyama et al. [17]
resolved a 420 lp�mm resolution target, implying a
resolution of about 1.2 mm. They also observed Fresnel

FIG. 1. Asymmetric Bragg diffraction. Slanted lines below
crystal’s surface represent Bragg planes.
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diffraction effects in images, not reported previously,
which were studied quantitatively by Spal [18]. Silver
[9] performed computed tomography with this instrument
using synchrotron radiation.

Only the two-crystal setup with perpendicular planes
of diffraction is considered below, and the crystals, sub-
sequently called magnifiers, are assumed to be identical.
The incident beam is assumed to be a linearly polarized
plane wave of wavelength l and wave number k � 2p�l,
whose electric field is parallel to the plane of diffraction
of the first magnifier. Inelastically scattered and secondary
radiation are ignored.

To analyze the microscope, rectangular coordinate
systems are established at the object, magnifiers, and
detector, as shown in Fig. 2. The positive z axes of these
systems follow the incident beam through the microscope,
and pass through the centers of the object, magnifier
surfaces, and detector. The magnifiers are aligned to pass
this beam through the center of their rocking curves. At
each magnifier, two coordinate systems are established,
denoted by CS�h for the �th magnifier, where h is O
for the incident beam coordinate system and H for the
diffracted beam coordinate system. CS1O and CS1H share
the same origin O1 and y axis, which lie on the magnifier’s
surface, while CS2O and CS2H share the same origin O2
and x axis, also on the magnifier’s surface. The positive
x1O and y2O axes are directed away from the magnifiers.
The remaining coordinate systems are indicated by the
subscripts o and d, for object and detector. Coordinate
systems with parallel z axes (e.g., CSo and CS1O) also
have parallel x and y axes. The yo axis is assumed to
be vertical.

The optical axis is the broken line joining all the origins
Op , and the distance from Op to Oq measured along the
optical axis is denoted Zpq. The magnification factor of
the �th magnifier, defined as jn� ? ẑ�H�n� ? ẑ�O j where
n� is a vector normal to its surface, is the same for both
magnifiers and is denoted m. The vectors r � �x, y, z�
and s � �x, y� are used to represent arbitrary points and
points on the plane z � 0, respectively. The vectors r0 �
�x0, y0, z0�, where z0 �

p
1 2 x02 2 y02, and s0 � �x0, y0�

are used to represent unit wave vectors and their transverse
components, respectively.

It is convenient to decompose the electromagnetic field
in each section of the microscope, defined by a segment of
the optical axis, into an angular spectrum of plane waves
with wave number k. Only paraxial plane waves, i.e.,
those with js0j ø 1, are considered, because others will
be strongly attenuated by the magnifiers. Because the elec-
FIG. 2. Microscope, showing magnifiers, object and detector
planes, positive x and y axes, and segmented optical axis, with
arrows indicating beam direction.

tric field polarization vector of each paraxial wave is very
close to x̂, any difference is ignored and the electromag-
netic fields are treated as scalar fields. The electric field
amplitude E�r� and its angular spectrum E0�s0� are related
by E�r� �

R
ds0 E0�s0� exp�ikr0 ? r�, where the time de-

pendence of E�r� has been suppressed. E�r� in the section
between Op and Oq, where CSp and CSq are parallel, is
denoted by Ep�rp� when expressed in CSp coordinates,
and by Eq�rq� when expressed in CSq coordinates; e.g.,
Eo�ro� � E1O�r1O� is the electric field amplitude between
the object and first magnifier. The angular spectrum of
Ep�rp� is denoted by E0

p�s0p�.
The structure of the object determines Eo�ro� on

the object plane, which in turn determines E0
o�s0o� �

l22
R

dso Eo����so , 0���� exp�2iks0o ? so�. Since ro �
r1O 1 Zo1ẑo , E0

1O�s01O� � exp�ikZo1z0o�E0
o�s0o�, where

s01O � s0o . The phase factor exp�ikZo1z0o� represents
Fresnel diffraction between the object and first magnifier.

At the first magnifier, according to the dynamical
theory of x-ray diffraction [19], each component incident
wave creates a component diffracted wave, producing
E1H�r1H� �

R
ds01O R1�s01O�E0

1O�s01O� exp ���ikr01H�s01O� ?

r1H���, where R1�s01O� is the reflectivity coefficient of
the magnifier, r01H�s01O� is implicitly defined by n1 3

�r01O 1 H�k 2 r01H� � 0, and H is the Bragg vector.
The corresponding angular spectrum is E0

1H�s01H� �
J�s01O ; s01H�R1�s01O�E0

1O�s01O�, where J�s01O ; s01H� is the
Jacobian of s01O with respect to s01H .

Assuming, for simplicity of discussion, the magnifier
has negligible absorption, which is a good approximation
for Si above about 15 keV,
R1�s01O��R�0� �

8<
:

exp ���i arcsin�2x0
1O�v1���� if jx0

1Oj , v1�2
2ix0

1O�v1 2 i sgn�x0
1O�

p
�2x0

1O�v1�2 2 1 otherwise

to first order in s01O , where R�0� � i
p

�cH�c H��m, cH and c H � c
�
H are the Fourier coefficients of the magnifier’s

dielectric constant at reciprocal lattice vectors H and 2H respectively, v1 is the magnifier’s rocking curve width, and
3045



VOLUME 86, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 2 APRIL 2001
sgn�u� � u�juj. All component waves are equally attenu-
ated by the factor m21�2 ���in R�0���� due to magnification.
Relative to the central wave �x0

10 � 0�, the waves between
the rocking curve edges �jx0

1Oj , v1�2� are phase shifted
monotonically in x0

1O by up to 6p�2 rad but unattenu-
ated. The variable phase shift defocuses the hologram, but
because it is nearly linear in x0

1O for jx0
1Oj & v1�4, low

resolution features are simply translated, and only high
resolution features are defocused. Relative to the central
wave, component waves outside the rocking curve edges
are attenuated increasingly with jx0

1Oj, asymptotically
as v1�4jx0

1Oj, and phase shifted by sgn�x0
1O�p�2 rad.

The increasing attenuation effectively bandlimits the
hologram.

As a function of m, the rocking curve width has a maxi-
mum value of v1 max �

p
2��uc sin2uB� jcH j cos2uB at the

optimum magnification factor mopt � sin�2uB��
p

2 uc and
optimum glancing angle

p
2 uc, where uc is the critical

angle of total external reflection. These results are de-
rived from a modified two-wave treatment of dynami-
cal diffraction [20–22], which ignores specular reflection
but accurately treats the index of refraction correction to
Bragg’s law. (The standard two-wave treatment fails at
grazing incidence, e.g., it incorrectly predicts that v1 ! `

as m ! `). The modified two-wave treatment is a good
approximation at the optimum glancing angle, and has the
advantage of yielding simple formulas, but a more rigorous
four-wave treatment [23] is available for numerical cal-
culations. The second magnifier has the same mopt, but
v2 max � v1 max� cos2uB because the electric field at the
second magnifier is polarized perpendicular to the plane
of diffraction, rather than parallel to it.

A conservative value for the limiting resolution of the
microscope is v1 max�2l, representing the maximum spa-
tial frequency unattenuated (relative to zero frequency) at
the optimum magnification factor mopt. v1 max�2l and
mopt are nearly independent of wavelength when uB &

15±. At wavelengths below about 1.5 Å, the limiting reso-
lution is 850 lp�mm �0.6 mm� at mopt � 89 for Si (111)
reflections, and 1700 lp�mm �0.3 mm� at mopt � 60 for
Ge (111) reflections. Specified at 25% modulation transfer
(i.e., 75% attenuation), the resolutions are twice as good.
For (220) reflections at wavelengths below about 1.0 Å, the
resolutions are about 10% worse, and the optimum magni-
fication factors are about 70% greater.

The microscope efficiency, defined as the fraction of the
incident beam power reflected by the magnifiers (with no
object), is less than 1 due to absorption by the magnifiers,
and increases with photon energy, except across an absorp-
tion edge. For Si(111) and (220) reflections at the optimum
magnification factor, the efficiency is about 50% at 10 keV,
and 75% at 15 keV. For Ge (111) and (220) reflections at
the optimum magnification factor, the efficiency is about
60% just below the K absorption edge at 11.1 keV, 25%
at 18 keV, and 50% at 27 keV.
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Combining the above results with analogous ones for
the remaining sections of the microscope yields the
optical transfer function OTF�s0o� � exp ���iF�s0o���� 3

R1�s01O�R2�s02O�J�s01O; s01H�J�s02O; s02H�, where F�s0o� �
k�Zod 2 �Zo1 1 Z1d�m2�x02

o �2 2 �Zo2 1 Z2d�m2�y02
o �2�

to second order in s0o . OTF relates the angular spec-
tra in the object and detector spaces by E0

d�s0d� �
OTF�s0o�E0

o�s0o�, and can be used to compute the electric
field on the detector plane, given the electric field on the
object plane, or vice versa.

The phase factor exp�iF� in OTF represents Fresnel
diffraction. For m � 1, F reduces to its free space form
kZod�1 2 js0oj

2�2�. For m fi 1, it is asymmetric with re-
spect to Zo� and Z�d �� � 1, 2�, and consequently asym-
metric with respect to the x and y axes. For m ¿ 1 and
typical Z�d , horizontal features undergo negligible diffrac-
tion after the horizontal magnifier, and vertical features
undergo negligible diffraction after the vertical magnifier.

To first order in s0o , s0d�s0o� � 2s0o�m. When m � 1,
the higher order terms vanish, making s 0

d�s0o� strictly lin-
ear, which implies the microscope is isoplanatic, i.e., its
point spread function is the same over the field of view.
When m fi 1, the microscope is nonisoplanatic, because
the optical path length between the object plane and detec-
tor plane varies over the field of view, making the strength
of Fresnel diffraction variable, and hence making the point
spread function also variable.

If Ed�rd� could be measured on the detector plane, OTF
could be used to compute Eo�ro� on the object plane,
but only the electric field’s intensity Id�rd� � jEd�rd�j2
can be measured and not its phase, so half the necessary
data is missing. The solution to this phase retrieval
problem is to measure Id�rd� at one or more additional
values of Zo1 to supply the missing data, and solve
the nonlinear equations Id����sd , 0�; Z

���
o1 ��� � j

R
ds0d 3

OTF�s0o; Z
���
o1 �E0

o�s0o� exp�iks0d ? sd�j2 �� � 1, . . . , N� for

E0
o�s0o�, where Z

���
o1 �� � 1, . . . , N� are the values of Zo1.

Absorption and phase contrast images of the object, i.e.,
Io����so , 0���� and arg�Eo����so , 0�����, may be computed from
E0

o�s0o�. Thus, the microscope can be used for in-line
holography with numerical phase retrieval. Hard x-ray
in-line holography with numerical phase retrieval was
recently used to tomographically reconstruct a phase
object [24].

An equivalent in-line holographic imaging problem oc-
curs in electron microscopy, where a series of micrographs
with different defocus conditions is used to determine the
electron wave function on the object plane by solving cor-
responding nonlinear equations, given the transfer function
[25,26]. For the electron microscope, the transfer function
must be experimentally determined. For the x-ray micro-
scope, it can be accurately computed from basic theory
because the magnifiers are nearly perfect crystals.

Aberrations due to non-plane-wave illumination must be
kept smaller than the limiting resolution in order not to
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degrade it. For illumination by a synchrotron radiation
source with a crystal monochromator, the aberrations de-
pend on the horizontal and vertical source sizes Xs and
Ys, and the monochromator rocking curve width vm. For
the purpose of estimating typical aberrations, it is assumed
that Xs � 700 mm, Ys � 40 mm, the distance from the
source to the object Zso is 60 m, the object is close to the
first magnifier, m ¿ 1 (e.g., m � mopt), the magnifiers
are just long enough to fully illuminate the detector, and the
detector is square with length Ld of 1 cm. The aberration
due to the monochromator rocking curve width is roughly
Ldvm�m sin2uB, which is negligible for a monochroma-
tor with Si (111) symmetric reflections. The aberration
due to the vertical source size is roughly LdYs�Zso sin2uB,
which is also negligible. The aberration due to the hori-
zontal source size is roughly LdXs�Zso sin2uB, which is
0.3 mm at l � 1 Å for Si or Ge (111) reflections, and
varies nearly as l21 at shorter wavelengths. This aberra-
tion can be reduced by using a slit to effectively decrease
Xs, and/or by using (220) reflections instead of (111).

In conclusion, the asymmetric Bragg diffraction mi-
croscope can form magnified in-line near-field holograms
at submicrometer resolution, with high magnification and
high efficiency, over a wide range of hard x-ray wave-
lengths. Its optical transfer function can be accurately
computed from basic theory, because the magnifiers are
nearly perfect crystals. As a result, absorption and phase
contrast images can be computed from holograms acquired
at several object distances. These characteristics make the
microscope very promising for performing submicrometer
resolution hard x-ray microtomography with synchrotron
radiation.
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