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Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps
in Two-Dimensional Solid Phononic Crystals
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Experimental measurements of acoustic transmission through a solid-solid two-dimensional binary-
composite medium constituted of a triangular array of parallel circular steel cylinders in an epoxy matrix
are reported. Attention is restricted to propagation of elastic waves perpendicular to the cylinders. Mea-
sured transmitted spectra demonstrate the existence of absolute stop bands, i.e., band gaps independent
of the direction of propagation in the plane perpendicular to the cylinders. Theoretical calculations of
the band structure and transmission spectra using the plane wave expansion and the finite difference time
domain methods support unambiguously the absolute nature of the observed band gaps.

DOI: 10.1103/PhysRevLett.86.3012

Optical properties of heterogeneous materials with a
periodic structure have received a great deal of attention
during the past two decades. Much effort has focused on
the search of large band gaps in the optical band structure
of periodic inhomogeneous dielectric materials. Several
geometries of these so-called “photonic” crystals have
been proposed: one-dimensional (1D) systems in the form
of Bragg lattices [1] or comblike structures [2], 2D systems
such as arrays of parallel cylinders embedded in a matrix,
and 3D crystals with various distributions of spheri-
cal inclusions suspended in a host matrix [3]. Recently,
the mathematical analogy between Maxwell’s equations
and the equations of linear elasticity has spurred a ‘“re-
newed interest” in “phononic” crystals, that is periodic
inhomogeneous elastic media exhibiting forbidden bands
in their acoustic transmission spectrum. In these materials,
the density and the elastic constants are periodic functions
of the position. Although the propagation of elastic
waves in periodic composite materials is an old topic
in condensed matter physics and/or acoustics [4], the
search of acoustic band gaps in heterogeneous materials
gave rise, in recent years, to numerous theoretical and
experimental investigations. Theoretical models of 2D
[5,6] and 3D [7,8] phononic crystals based on the plane
wave expansion (PWE) method have shown that the width
of the acoustic band gaps strongly depends on the compo-
sition and the geometry as well as on the nature of the con-
stitutive materials. A large contrast in physical properties
between the inclusions and the host material is required
to obtain large acoustic band gaps [9]. More recently,
Sigalas et al. [10,11] applied the finite difference time
domain (FDTD) method [12], well known in the field
of photonic crystals [13,14], to the study of two- and
three-dimensional elastic band gap materials. In contrast
to the PWE method, the FDTD method enables the
calculation of the acoustic transmission coefficient of a
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finite composite sample that can be measured routinely
in experiments. Moreover, the FDTD method can be
applied to mixed (solid-fluid) composites where the PWE
fails to work [15] due to the vanishing of the shear
modulus in the fluid component. In the FDTD method,
the elastic wave equations are discretized in both the
spatial and the time domains with appropriate boundary
conditions. The evolution of the elastic displacement
field is calculated in the time domain and when Fourier
transformed results in the acoustic transmission spec-
trum. The agreement between the FDTD and the PWE
methods seems to be excellent in locating the forbidden
bands [10].

Recently, we investigated experimentally the trans-
mission of elastic waves in 2D solid composite media
composed of square and centered rectangular arrays of
Duralumin cylindrical inclusions in an epoxy resin matrix
[16]. In these cases, the measured transmission drops to
noise level throughout frequency intervals in reasonable
agreement with the forbidden frequency bands calculated
with the PWE method. In parallel, other groups have
studied acoustic band gaps in mixed binary 2D composite
materials such as Hg, oil, or air cylinders in an Al matrix
[11,17] or metallic rods in air [18—-20].

In this Letter, we present a combined theoretical and
experimental study of a triangular 2D solid-solid phononic
crystal that demonstrates unambiguously the existence
of absolute acoustic band gaps. Let us recall that of all
phononic crystals studied to date theoretically, 2D triangu-
lar lattices of parallel cylinders in a matrix are expected to
exhibit the largest gaps [9]. We compute the band structure
for elastic waves propagating into the plane perpendicular
to the cylinders and the acoustic transmission spectrum for
longitudinal waves with the PWE method and the FDTD
scheme, respectively. The numerical results are compared
with transmissions measured experimentally with two
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finite size composite samples oriented along two different
directions of propagation.

We are dealing with a triangular array of steel cylinders
embedded in an epoxy resin matrix. The choice of these
materials is based on the strong contrast in their densities
and elastic constants [21]. We have manufactured two
samples of the same physical dimensions, 85 mm X
85 mm X 29 mm. The steel cylinders have a diame-
ter d = 4 mm. The periodicity of the triangular lattice
is a = 6.023 mm. This results in a filling fraction
f = wd?*/2a*\/3 = 0.4. In order to analyze the effect
of the direction of propagation on the band gaps, the first
sample contains 60 scatterers arranged in such a manner
that its thickness is parallel to the I'J direction of the trian-
gular Brillouin zone. A second sample consists of 67 cylin-
ders with the sample thickness along the I'X direction. We
have illustrated in Figs. 1(a) and 1(b) the two-dimensional
cross sections of these samples. Our experimental setup is
based on the well-known ultrasonic transmission technique
which uses a couple of ultrasonic broadband transmitter/
receiver transducers with a central frequency on the order
of 1 MHz and a diameter of 25 mm (Panametrics con-
tact transducers type Videoscan No. V102). A pulser/
receiver generator (Panametrics model 5052 PR) produces
a short duration (about 100 ns) large amplitude (200
to 380 V) pulse which is applied to the transmitting
transducer launching the probing longitudinal waves. The
signal acquired by the receiver is postamplified and then
digitized with a maximum sampling rate of 100 MHz
(or 10 ns/point) by a Lecroy digital oscilloscope. To
reduce the random errors, each measurement is averaged
over a sample size of 200 with the oscilloscope which
performs fast Fourier transform on the acquired signals.
Both emitter and receiver are coupled to the transversal
walls of the specimen using a coupling gel. The acoustic
transmission spectra of Figs. 2(a) and 2(b) clearly show
two forbidden bands. The first band gap appears between
120 and 270 kHz for the two directions considered. At
higher frequencies, the transmission drops to noise level
between 350 and 510 kHz in the direction I'J and 430 to
560 kHz in the direction I'X. The intersection frequency
domain 430-510 kHz is therefore independent of the
direction of propagation. One should stress that because
of the strong attenuation of the transmitted power at these
high frequencies, it is quite difficult to define precisely the
edges of the region with noise level transmission.

We have calculated with the PWE method, the band
structure of an infinite periodic triangular lattice with the
same lattice parameter and physical characteristics as the
experimental samples. We limit the wave propagation to
the plane XY perpendicular to the cylinders. This approxi-
mation has for effect to decouple the elastic displacements
in the XY plane (called XY modes) and those parallel to the
Z direction denoted Z modes [see Fig. 1 for an illustration
of the (0,X,Y,Z) reference frame]. In the PWE method,
the 2D periodicity in the XY plane allows one to develop
the density and the elastic constants in the Fourier series.
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FIG. 1. Two-dimensional cross sections of the triangular ar-
ray of steel cylinders embedded in an epoxy matrix: (a) the
“I'J” sample and (b) the “I'X” sample. The steel cylinders, of
circular cross section, are parallel to the Z axis of the Carte-
sian coordinate system (0,X,Y,Z). The lattice parameter a is
defined as the distance between two nearest neighboring cylin-
ders. The inset shows the irreducible Brillouin zone of the
triangular array.

Then, the equations of linear elasticity become standard
eigenvalue equations for which the size of the matrices in-
volved depends on the number of G vectors of the recipro-
cal lattice taken into account in the Fourier series [6]. The
band structure for the XY modes (Fig. 3) was calculated
here with 1381 G vectors. This number of G vectors in-
sures sufficient convergence of the Fourier series. Figure 3
indicates the existence of two absolute band gaps extend-
ing throughout the 2D triangular Brillouin zone. The first
gap extends from the frequency of 124 kHz up to 276 kHz
and is in very good agreement with the experiment. The
second absolute gap occurs between 441 and 483 kHz and
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FIG. 2. Transmission power spectrum measured perpendicular
to the vertical faces of the (a) “I'J”” sample and (b) “T"X” sample.
The transmitted power is given in arbitrary units. The probing
signal is a longitudinal wave.
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FIG. 3. PWE results for the band structure of the two-
dimensional XY modes of vibration in the periodic triangular
array of steel cylinders in an epoxy resin matrix for a filling

fraction f = 0.4. The reduced wave vector l;(kx, ky) is defined

as K a/2m where K is a two-dimensional wave vector. The
points I', J, and X are defined in the inset of Fig. 1. Absolute
band gaps are represented as hatched areas.

falls also in the experimental range although, for both I'J
and I'X directions, the transmission drops to the noise level
throughout a wider range than the one predicted by the
band structure. This difference can be attributed to the
low level of transmission in this range of frequency, but
more especially to the fact that some eigenfrequencies of
the structure may not contribute very significantly to the
transmission.

To gain a better insight into these effects, and also to
investigate the qualitative behavior of the transmission in-
side the passbands, we have applied the FDTD method to
calculate the transmission through two finite size samples
oriented, respectively, along the I'J and I'X directions.
We limit the calculations to a strictly 2D FDTD scheme.
The FDTD samples are composed of three adjacent re-
gions. The probing signal corresponding to a longitudinal
wave that propagates along the Y direction (see Fig. 1) is
launched from the first region and detected in the third one.
This signal is the superposition of five sinusoidal waves
of frequencies 100, 250, 400, 550, and 700 kHz weighed
by a Gaussian profile of full width at half maximum of
13.5 mm. Transmission of this signal through a homo-
geneous epoxy medium produces a broadband spectrum
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whose envelope resembles the experimental one. The cen-
tral region contains the phononic crystal. To probe the I'X
direction, the central region with a thickness (along the Y
direction) of 3a~/3 and a width (along the X direction) of a
contains nine cylinders. The I'J direction is modeled with
a rectangular central region containing eight cylinders, of
thickness, 4a, and width, a+/3. Periodic boundary condi-
tions are applied in the X direction perpendicular to the
direction of propagation. Absorbing boundary conditions
are imposed on the external surfaces of the first and third
regions. Space and time are discretized with fine enough
intervals to achieve convergence of the algorithm. Three
output signals (longitudinal vibrations) are detected at dif-
ferent locations. The transmission spectra are calculated
as the averages of their Fourier transforms.

The FDTD computed spectrum in the I'J direction is
shown in Fig. 4(a) where the longitudinal component, uy,
of the displacement field is given in arbitrary units as a
function of frequency. One observes an overall agreement
with the experiment. The width of the first gap is well
reproduced. The shape of the second passband as well as
its width is in better accord compared to the band structure.
Moreover one can notice a maximum of the transmission
coefficient in the middle of the lowest passband as well as
a qualitative similarity of the theoretical and experimental
transmissions at higher frequencies.

Figure 4(b) contains the FDTD results in the I'X direc-
tion. Again, the width of the first gap and the occurrence
of a maximum of transmission in the middle of the low-
est passband are in good agreement with the experiment.
However some discrepancies remain when considering the
location and shape of the second passband. The FDTD
spectrum presents, between 260 and 400 kHz, two peaks
separated by a narrow stop band centered around 320 kHz,
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FIG. 4. Transmission spectrum computed with the FDTD
method along the I'J direction (a) and along the I'X direction
(b) of propagation. The longitudinal component uy of the
output displacement field is given in arbitrary units.
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in accordance with the local gap in the band structure
of Fig. 3. In contrast the experimental spectrum exhibits
three distinct peaks, the second of maximal amplitude cen-
tered on 340 kHz. Also the second gap (430—-560 kHz in
Fig. 2) is located nearly 40 kHz higher than predicted by
the FDTD method. At this point, it is worthwhile to notice
that the measurement of sound velocities in epoxy is sub-
ject to important uncertainties (since these velocities are
quite dependent on the conditions of sample preparation),
and in turn the location of the higher bands in the theo-
retical calculations may be affected by a few tens of kHz.
Therefore a detailed interpretation of the measured spec-
trum above 280 kHz, with a one to one correspondence
between experiment and theory, does not seem possible al-
though one may infer that there is a good correspondence
between the major peak (around 340 kHz) in the measured
and calculated spectra. Another point that deserves further
attention concerns the divergence of the emitted acoustic
signal, i.e., the fact that the input signal is not a plane
wave but is composed of a set of wave vectors inside a
cone around the incident direction. Therefore other modes
than those considered till now in the PWE and FDTD cal-
culations can be excited, that in turn may affect the final
transmission.

In conclusion, we have investigated experimentally
and theoretically the propagation of acoustic waves in a
binary 2D phononic crystal constituted of a triangular
array of parallel, circular, steel cylinders in an epoxy resin
matrix. We have limited the wave propagation to the plane
perpendicular to the cylinders. The measurements and the
numerical calculations prove unambiguously the existence
of two absolute stop bands independent of the direction of
propagation of the acoustic waves. Besides the band gaps,
one can establish some qualitative and even semiquan-
titative correspondences between the experimental and
theoretical transmission spectra inside the pass bands.
However, a more quantitative comparison would need to
repeat such experiments with other samples (for instance
to check the possibility of defects during the sample
preparation, different thicknesses of the samples, etc.),
and also to include in the FDTD calculation the possibility
of three-dimensional propagation due to the divergence
of the initial pulse. In this respect, an analysis of the
eigenvectors associated with the different modes would
be also helpful for an understanding of the details of the
experimental transmission spectra.
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