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A multicomponent density-functional theory is developed for the combined system of electrons and
nuclei. We construct approximate functionals for the electron-nuclear correlation energy and illustrate
the theory by explicit calculations for the H1

2 molecular ion.
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First-principles calculations based on density-functional
theory (DFT) [1,2] have greatly contributed to our un-
derstanding of atoms, molecules, and solids. Traditional
DFT, by its very nature, always involves the Born-
Oppenheimer (BO) approximation: One calculates the
electronic ground-state density corresponding to the elec-
trostatic potential of clamped nuclei. In addition, the nu-
clear degrees of freedom are often treated classically.
Nevertheless, there is a wealth of phenomena requiring a
description where these limitations have to be overcome.
Among those where the quantum nature of the nuclei is
known to be important are, e.g., surface reactions of small
molecules [3], solid hydrogen [4], or floppy molecules.
The nonadiabatic coupling between the electronic and
nuclear motion manifests itself in numerous and rather
diverse phenomena ranging from the Jahn-Teller effect
and the electron-phonon interaction with its various con-
sequences, to the branching ratios of chemical reactions
[5] and the strong-field dynamics of molecules exposed
to high-intensity laser fields [6]. To deal with phenomena
of this kind, we propose, in this Letter, a generalization
of DFT to multicomponent systems (MCDFT) which
treats both electrons and nuclei quantum mechanically
and which, at the same time, includes the nonadiabatic
coupling between electronic and nuclear motion. The
focus will be on stationary systems; time-dependent
situations will be discussed elsewhere.

We consider a system of Ne electrons with coordinates
�rj� � r and Nn nuclei with masses M1, . . . , MNn , charges
Z1, . . . , ZNn , and coordinates denoted by �Ra� � R. Such
a system is characterized by the Hamiltonian

Ĥ � T̂n 1 T̂e 1 Ŵnn 1 Ŵee 1 Ŵen , (1)

where the subscripts “e” and “n” refer to electrons and
nuclei, respectively. T̂ denotes the kinetic energy and Ŵ
represents the bare Coulomb interactions between the par-
ticles. Note that no BO approximation has been assumed
in (1); in particular, the Coulomb interaction between elec-
trons and nuclei is not treated as an external potential.
Truly external potentials representing, e.g., an applied volt-
age are easily included in the formalism. For the sake of
simplicity we restrict ourselves, in this Letter, to the case
of vanishing external fields.
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As a first step towards the formulation of a MCDFT
scheme, we discuss the choice of densities which will serve
as the fundamental variables of the theory. One might be
tempted to use the single-particle electronic density ob-
tained from a solution C�R, r � of the Schrödinger equa-
tion (SE) associated with the Hamiltonian (1): r�r� �
Ne

R
dNn R

R
dNe21r jC�R, r �j2 and an analogous quan-

tity for the nuclei. A MCDFT is readily formulated in
terms of these densities [7]. However, this MCDFT, al-
though formally correct, is not useful in practice because
the densities, as a consequence of the translational invari-
ance of Hamiltonian (1), are constant for all isolated atoms,
molecules, and solids and therefore are not characteristic
of the internal properties of the system.

A suitable single-particle density is obtained by defining
it with respect to a coordinate frame which is attached
to the system. To this end, the electronic coordinates in
(1) are transformed to a body-fixed frame according to
r0j :� R�a, b, g� �rj 2 Rc.m.n.�, j � 1, . . . , Ne, where
Rc.m.n. :� 1

Mnuc

P
a MaRa denotes the center of mass

(c.m.) of the nuclei, Mnuc :�
P

a Ma , and R is the
3 3 3 orthogonal matrix representing the Euler rotations
[8]. The Euler angles (a, b, g) specify the orientation
of the body-fixed coordinate frame and are determined
by requiring the nuclear inertial tensor to be diagonal
in the body-fixed frame. Of course, introducing internal
nuclear coordinates appears desirable as well. However,
the choice of such coordinates depends strongly on the
specific system to be described: If near-equilibrium
situations of systems with well-defined geometries are
considered, normal or phonon coordinates are most appro-
priate, whereas fragmentation processes of molecules are
better described in terms of Jacobi coordinates. Therefore,
in order to keep a high degree of flexibility, the nuclear
coordinates are left unchanged at this point and are only
transformed prior to actual applications.

As a result of the above coordinate transformation, the
kinetic-energy part of the Hamiltonian (1) transforms into
(using atomic units)

T̂ �
X
a

µ
2

=
2
Ra

2Ma

∂
1

X
j

µ
2

=
2
r0

j

2

∂
1 T̂MPC . (2)
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T̂MPC :�
P

a�2 1
2Ma

� �=Ra
1

P
j

≠r0
j

≠Ra
=r0

j
�2 2 T̂n repre-

sents the mass polarization and Coriolis contributions
arising from the transformation to a noninertial coordinate
frame. In order to formulate a Hohenberg-Kohn– type
statement, the Hamiltonian (1) is generalized to
Ĥ � T̂ 1 Ŵ 1 V̂n 1 V̂e, where Ŵ � Ŵee 1 Ŵen

comprises the electron-electron and the electron-nuclear
interactions, and where V̂n � Vn�R� and V̂e �

P
j ye�r0j�

represent auxiliary “external” potentials referring to the
transformed coordinates. V̂n is an arbitrary multiplicative
Nn-body operator with respect to the nuclear coordinates
and includes the nuclear-nuclear interaction Ŵnn. In
terms of the ground-state wave function C�R, r0 � of this
Hamiltonian, we define the following densities:

r�r0� � Ne

Z
dNn R

Z
dNe21r0 jC�R, r0 �j2, (3)

G�R� �
Z

dNe r0 jC�R, r0 �j2. (4)

By Eq. (3), an electronic single-particle density is defined
with respect to the body-fixed frame which is characteristic
of the internal properties of the system. The nuclear de-
grees of freedom are described by the Nn-particle nuclear
density matrix, given by Eq. (4).

The transformed Hamiltonian and the above defined
densities (3) and (4) now provide a suitable basis for
the formulation of a MC Hohenberg-Kohn (MCHK) theo-
rem. It can be summarized by the following statements:
(1) The set of ground-state densities �G, r� uniquely de-
termines the ground-state wave function, C � C�G, r�,
as well as the set of potentials, �V̂n�G, r�, V̂e�G, r��. As
a consequence, any observable of the static many-body
system is a functional of the set of ground-state densi-
ties �G, r�. (2) The total-energy functional E�G, r� :�
	C�G, r� jĤjC�G, r�
 is equal to the exact ground-state
energy E0 of the system only if the exact ground-state den-
sities G0 and r0 are inserted. For all other densities, the
inequality E0 , E�G, r� holds true. This MCHK theorem
can be proven along the usual lines [2] using either the re-
ductio ad absurdum or the constrained search approach.

As usual, the HK proof goes through for any particle-
particle interaction. We can therefore apply it to an aux-
iliary system which is characterized by Ŵ � 0, i.e., it
consists of noninteracting electrons and of nuclei which
interact only among themselves. The ground state associ-
ated with this system is then described byµ

2
=2

2
1 yS,e�r� 2 ee,j

∂
wj�r� � 0 , (5)

µ
2

X
a

=2
a

2Ma

1 VS,n�R� 2 en

∂
x�R� � 0 , (6)

and the corresponding densities are given by

r�r� �
X
j

jwj�r�j2, G�R� � jx�R�j2. (7)
(For notational simplicity, the primes at the electronic
coordinates are dropped from here on. By convention,
all electronic coordinates are understood to refer to the
body-fixed frame.) Assuming noninteracting—�Vn, ye�—
representability, the effective potentials VS,n�R� and
yS,e�r� of the auxiliary system can be chosen such that (7)
reproduces the exact ground-state densities �G0, r0� of the
fully interacting many-particle system. Once the existence
of VS,n and yS,e is assumed, they are, by virtue of the
MCHK theorem, uniquely defined by the ground-state
densities. In fact, using the MCHK variational theorem,
we obtain

yS,e�r� � ye�r� 1 yHxc�r� , (8)

VS,n�R� � Vn�R� 1 VHxc�R� , (9)

where Vn�R� and ye�r� are the external potentials in-
troduced above. For isolated systems, Vn�R� contains
only the internuclear Coulomb repulsion, i.e., Vn�R� �
Wnn�R�, and ye�r� vanishes. The Hartree-exchange-
correlation (Hxc) potentials are defined as functional
derivatives of the Hxc energy functional, i.e., yHxc�r� :�
dEHxc�G, r��dr�r�G0,r0 and VHxc�R� :� dEHxc�G, r��
dG�R�G0,r0 . The Hxc energy functional represents the
central quantity of MCDFT and is defined by

EHxc�G, r� :� F�G, r� 2 TS,n�G� 2 TS,e�n� , (10)

where TS,n�G� �
R

dNn Rx��R�
P

a�2=2
a��2Ma��x�R�

and TS,e�n� �
P

j

R
dr w

�
j �r� �2=2�2�wj�r� represent the

kinetic energies of the auxiliary system and F�G, r� �
	C�G, r� jT̂ 1 Ŵ jC�G, r�
. By definition, EHxc�G, r�
contains all many-body effects except the nuclear repul-
sion, which is treated exactly within the auxiliary system.

Equations (5)–(9) constitute the MC Kohn-Sham
(MCKS) system. Since the effective potentials depend
on both densities, the electronic and the nuclear SE are
coupled and have to be solved self-consistently. We em-
phasize that Eq. (5), although formally similar to the usual
electronic KS equation, does not depend parametrically
on the nuclear configurations. Instead, the information
on the nuclear density distribution is included through
the functional dependence on G. Considering the nuclear
MCKS equation (6), we realize its similarity with the con-
ventional nuclear BO equation. Yet, no BO approximation
has been used to derive Eq. (6). Since the MCKS scheme
provides the exact ground-state densities of the system,
all non-BO effects are, in principle, included. Like the
nuclear BO equation, Eq. (6) involves an Nn-body mul-
tiplicative potential. This is an immediate consequence
of choosing the nuclear Nn-body density matrix G as a
basic variable. Had we chosen the nuclear single-particle
density instead of G, we would have obtained a 1-body
SE in place of Eq. (6), and this would not have allowed
for a realistic description of collective degrees of freedom
such as phonons. Only by setting up the MCDFT in terms
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of G�R� and the corresponding many-body SE (6), the
formalism has sufficient flexibility to encompass a large
variety of situations: For single molecules and solids, the
nuclear many-body SE (6) will usually be treated within
the harmonic approximation, leading to solutions in terms
of normal or phonon modes. For liquids and plasmas, on
the other hand, a Hartree-Fock– type treatment of Eq. (6)
will be more appropriate.

For any practical application, the functional EHxc�G, r�
needs to be approximated. The remaining part of this Let-
ter will be devoted to the construction of explicit approxi-
mations for EHxc. We first decompose the functional into
parts associated with the different interactions: Following
[9], we write

EHxc�G, r� � Ee
H�r� 1 Ee

xc�r� 1 Een
Hc�G, r�

1 TMPC�G, r� , (11)

where the first two terms are the familiar Hartree and xc
energy functionals known from standard electronic DFT.
It is important to note that the electron-electron interac-
tion can therefore be treated in the usual way, namely,
by employing the highly successful and well-studied ap-
proximations for Ee

xc�r�. The last term on the right-hand
side of Eq. (11) includes all effects due to mass polariza-
tion and Coriolis forces. At least for ground-state prop-
erties, this term is expected to be very small. The third
term in Eq. (11), Een

Hc�G, r�, contains all effects due to the
electron-nuclear interaction. Using the coupling-constant
integration technique [10], adapted to the electron-nuclear
interaction [9], it can be shown that

Een
Hc�G, r� �

Z
dNn R G�R�

3
Z

dr Wen�r, R�ḡ�G, r� �r jR� , (12)

where Wen�r, R� � 2
P

a Za�jR21r 2 Ra 1 Rc.m.n.j,
and g�r jR� :� Ne

R
dNe21r jC�R, r �j2�G�R� denotes

the electronic conditional density. ḡ represents the
coupling-constant average of g.

To gain further insight in the functional Een
Hc we first

consider the corresponding potentials in two limiting
situations: If the nuclei are perfectly localized at R

eq
,

it is easy to see that the potential y
en
Hc�r� reduces to

Wen�r, R
eq

�, i.e., it coincides with the classical Coulomb
field of the nuclei in ordinary BO-based DFT. Hence, in
the limit of classical nuclei the MCDFT method reduces to
the standard electronic DFT. Next, we turn our attention
to the nuclear MCKS Eq. (6). If the BO approximation
accurately describes the system under consideration,
one can show that VHxc�R� � e

BO
0 �R�, where e

BO
0

denotes the lowest BO potential-energy surface. As a
consequence, the nuclear MCKS equation reduces to
the nuclear BO equation in this limit. We emphasize,
however, that the way to evaluate this potential differs
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in the MCKS and BO methods. Whereas, in the latter,
an electronic equation has to be solved for each nuclear
configuration, the MCKS potential is determined by the
functional derivative dEen

Hc�G, r��dG�R�. Inserting the
ground-state densities then yields a potential which, in
this particular case, is very close to the BO potential as a
function of R.

It remains to find approximations of the electron-nuclear
Hartree-correlation (Hc) energy Een

Hc�G, r�. The easiest
approach replaces Een

Hc by the Hartree energy

Een
H �G, r� �

Z
dNn R

Z
dr G�R�Wen�r, R�r�r� . (13)

In other words, the electron-nuclear interaction is ap-
proximated by the classical electrostatic interaction of the
corresponding charge distributions [11] and correlation
contributions are neglected. In order to assess the accuracy
of this (crudest-possible) approximation, we apply it to the
simplest diatomic molecule, namely, the H1

2 molecular
ion. Since there is no electron-electron interaction, this
molecule naturally lends itself as a prototype for the analy-
sis of the previously not much studied electron-nuclear
correlation energy.

In order to solve the MCKS equations for the H1
2

molecule, we first separate off the nuclear c.m. motion in
Eq. (6) so that the remainder of x depends only on the in-
ternuclear separation R :� jR2 2 R1j. Then, the remain-
ing equations are treated numerically on a finite-difference
grid. In the second column of Table I, we show a selection
of results obtained within the Hartree approximation as
described above. Since the H1

2 molecule is well described
within the BO approximation, we have also added the
BO results in the first column of this table. Considering
the simplicity of the Hartree approximation, we find
surprisingly good results. Especially the total energy E0
and the geometry, represented by the mean internuclear
distance 	R
, are in good agreement with the exact results,
with deviations of about 1%. However, turning towards
the harmonic constant v, we find that the Hartree result is
off by more than a factor of 2. Comparing (13) with (12)
we realize that the Hartree approximation corresponds

TABLE I. Comparison of results obtained for the H1
2

molecules from self-consistent solutions of the MCKS scheme
using the various approaches discussed in the text. For com-
parison, results from BO calculations are added. All numbers
(except v) are in atomic units.

BO Hartree OAO SAO

2E0 0.598 0.591 0.595 0.581
TS 0.591 0.583 0.574

2Een
Hc 1.673 1.662 1.642

	1�R
 0.489 0.491 0.485 0.487
	R
 2.07 2.05 2.08 2.08
	R2
 4.30 4.22 4.37 4.39

v �cm21� 2297 5191 3248 2232
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to replacing the electronic conditional density ḡ�r jR�
by r�r�. This is a good approximation near Req but
fails seriously for larger R. To improve on the Hartree
functional, we approximate g�r jR�, in the spirit of the
Heitler-London approach, by

g�r jR� �
1

n�R�

3

Ç
F

µ
r 2

R
2

ez

∂
1 F

µ
2r 2

R
2

ez

∂ Ç2
,

(14)

where the “atomic” orbital F�r� is to be represented as a
functional of the densities: F � F�G, r�. To that end,
we first recall the fact that, given an atomic orbital F�r�,
bonding and antibonding molecular orbitals— for a fixed
internuclear distance R —can be obtained from

c
B�A
R �r� �

1p
n6�R�

3

∑
F

µ
r 2

R
2

ez

∂
6 F

µ
2r 2

R
2

ez

∂∏
.

(15)

n�R� in Eq. (14) and n6�R� in (15) ensure normalization.
To construct the functional F�G, r�, we now identify the
electronic MCKS orbitals, i.e., the solutions of Eq. (5) for
the ground state, f0�r�, and for the first excited state,
f1�r�, with the bonding/antibonding orbitals of Eq. (15)
at R � 	R
, i.e., f0�1�r� � c

B�A
	R
 . Using this prescription,

we can solve Eq. (15) for the atomic orbital, which is there-
fore determined as an implicit functional of the densities
G and n. Inserting the atomic orbital in (14) leads to an
approximation for the conditional density and, by virtue
of Eq. (13), to an approximation for Een

Hc�G, r� as an (im-
plicit) functional of the densities. The results obtained by
applying this “optimized atomic orbital” (OAO) approxi-
mation to the H1

2 molecule are presented in the third
column of Table I. Apparently, the method consistently
improves upon the Hartree approach. The total energy and
the geometry are almost on top of the BO results, and the
deviations in the harmonic constant v are also somewhat
reduced within the OAO approximation. However, the re-
maining error in v is still substantial and can be explained
by the wrong R ! ` asymptotics of gOAO�r jR�.

In view of the first successes of the OAO approach, we
further exploit the ansatz (14) to include correlation con-
tributions for the electron-nuclear interaction. However,
in order to improve on the failures of the OAO approach,
we slightly change the prescription of how to construct the
atomic orbital F�G, r�. Instead of employing Eq. (15), the
atomic orbital F is now obtained by a scaling procedure
[12]: F�r� � l3�2F`�lr�. The scaling function l�R� is
determined self-consistently as a functional of the densi-
ties, l�R� � l�G, r� �R�, by employing the sum rule

r�r� �
Z

dR G�R�g�r jR� , (16)

which is a rigorous property of the conditional density
g�r jR�. Furthermore, choosing f` as the electronic KS
orbital of the separated atomic limit ensures the correct
behavior in the R ! ` limit. Although this “scaled atomic
orbital” (SAO) approach slightly worsens the total energy
of the H1

2 molecule, as seen in the last column of Table I,
the harmonic constant is now in very good agreement with
the BO results.

In conclusion, we have presented a multicomponent
DFT for the complete system of electrons and nuclei. The
method is similar, in spirit, to the Car-Parrinello scheme
[13] in that it avoids the calculation of BO surfaces while,
at the same time, the nuclear degrees of freedom are treated
fully quantum mechanically.
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