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Quantum Calculation of the Dipole Excitation in Fusion Reactions
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The excitation of the giant dipole resonance induced by fusion reaction is studied with N/Z asymme-
try in the entrance channel. The time dependent Hartree-Fock solution exhibits a strong dipole vibration
which can be associated with a giant vibration along the main axis of the deformed compound nucleus.
This dipole motion appears to be nonlinearly coupled to the shape oscillation, leading to a strong modu-
lation of its frequency. These phenomena can be detected in the gamma-ray emission from hot compound

nuclei.
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Ordered collective motions are a general property of
mesoscopic systems. In metallic clusters, electron vibra-
tions are plasmon excitations. In atomic nuclei, oscil-
lations of protons against neutrons generate giant dipole
resonances [1,2]. The general way to excite such modes
is to use rapidly varying electromagnetic fields associated
with photons or generated by fast electrically charged par-
ticles. The collective vibrations can also be thermally
excited, as clearly demonstrated in the studies of the 7y
emission from hot nuclei [3—6]. It has been recently pro-
posed that fusion reactions with N/Z asymmetric nuclei
may lead to the excitation of a dipole mode because of the
presence of a net dipole moment in the entrance channel
[7-9]. The first experimental indications of the possible
existence of such new phenomena have been reported in
[10] for fusion reactions and in [11] for deep inelastic col-
lisions. Howeyver, the real nature of such a vibration is
still unclear both from the experimental and the theoretical
point of view. In particular, only semiclassical approaches
or schematic models have been used to infer the properties
of the generated dipole mode.

In this Letter, we present the first quantum calculation
of preequilibrium giant collective vibrations using the time
dependent Hartree-Fock (TDHF) approach [12-15,16].
TDHEF corresponds to an independent propagation of each
single particle wave function in the mean field generated
by the ensemble of particles. It does not incorporate
the dissipation due to two-body interaction [17-19],
but takes into account one-body mechanisms such as
Landau spreading and evaporation damping [20]. The
quantal nature of the single particle dynamics is explicitly
preserved, which is crucial at low energy both because of
shell effects and of the wave dynamics. Moreover, TDHF
is a strongly nonlinear theory. Hence it can exhibit new
couplings between collective modes.

In the time dependent Hartree-Fock approach, the
evolution of the single particle density matrix p(7) =
SN lon) (@l is determined by a Liouville equation,

9 _
ih="p [A(p), p] = 0,

where h(p) is the mean-field Hamiltonian. We have used
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PACS numbers: 24.30.Cz, 21.60.Jz, 25.70.Gh, 25.70.Jj

the code built by Bonche and co-workers with an effective
Skyrme mean field and SLy4 parameters [21].

The effect of the isospin asymmetry in the entrance
channel has been first studied in the 2°0 + 2°Mg fusion
reactions at energies close to the Coulomb barrier. Strong
quantum effects are expected in these mirror-nuclei reac-
tions leading to the N = Z *°Ca compound system. The
density plots obtained in the central collisions at a ki-
netic energy of 1 MeV per nucleon in the center of mass
frame is presented in Fig. 1. The system fuses and shows
quadrupole oscillation around a slowly damped prolate de-
formation. Since 2°0 and 2°Mg have significantly different
N over Z ratios (respectively, 1.5 and 0.67), the protons
and neutrons centers of mass do not coincide at the initial
stage of the collision, in contrast to what is obtained in the
fusion of two nuclei with the same N over Z ratio.

Let us first start with head-on-head collisions along the
x axis. Adequate observables to study the collective mo-
tion induced in this mechanism are the dipole moment
Q, and its conjugated quantity P;. Qg is the net dis-
tance between protons and neutrons: Q; = TZ(X » — Xn),
where X, and X,, are the proton and neutron’s centers of
mass coordinates. Similarly, Py = ﬁ(Pp — P,) where
P, =>,pp, and P, = >, p, are the moments of pro-
tons and neutrons. In Fig. 2 is plotted Q4 as a function of
P,4. As time goes on, we observe a spiral in the collective
phase space which signals the presence of a damped col-
lective vibration. Indeed, it originates from oscillations in
phase quadrature of the two conjugated dipole variables.

In order to associate the observed vibration with the
giant dipole resonance (GDR) in the composite nucleus
we must study the collective vibration of a “’Ca nucleus.
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FIG. 1. Density plots, projected on the reaction plane, for the
central collision reaction 2°0 + Mg at 1 MeV/u. Lines cor-
responds to equidistant values of the density.
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FIG. 2. Time evolution of the dipole vibration. Dipole moment
Qd and its conjugate Pd are plotted in the phase space (a) and
Pd is plotted in function of time (b).

The GDR associated to the dipole oscillation of a *°Ca
ground state has been excited by an isovector dipole field
and followed using the TDHF approach. The resulting
Q4 moment is plotted as a function of time in Fig. 3c.
The period of the observed oscillations is around 80 fm/c
which corresponds to an energy £ = 15.5 MeV in good
agreement with Skyrme RPA calculations [19] and close
to the experimental value £ ~ 20 MeV [22]. For the OCa
formed by fusion (Fig. 3a) it is around 150 fm/c. This
large difference is due to the deformation of the fused
system. Indeed, as we can see in Fig. 1, the compound
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FIG. 3. Time evolution of the component of the dipole moment

parallel to the deformation axis (a) and the component perpen-
dicular in the collision plane (b) for the reaction 2’0 + Mg
with the impact parameter b = 0 fm (solid line) and b = 4 fm
(dashed line). (c) GDR in the *°Ca with a spherical shape.
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nucleus relaxes its initial prolate elongation along the axis
of the collision with a typical time much larger than the
dipole oscillation’s period. During the considered time

window, the averaged value of the obser<vec§ quadrupole
O
2/5(Q00)

deformation parameter defined by € = is around
e = 0.23.

A lower mean energy is expected for this longitudinal
collective motion Egpr, as compared to the one simulated
in a spherical “°Ca. Following a macroscopic model for
the dipole oscillation we expect the energy of the GDR to

evolve with the deformation as
Egpr, = Ecpr(1 — €)% ()

The frequency of the GDR along the elongation axis fulfills
this relation with € = 0.26 in good agreement with the
observed average deformation.

The dominant role of the deformation in the lowering of
the GDR energy can be easily reproduced by performing a
Hartree-Fock calculation of a °Ca nucleus in an external
quadrupole field. This external field is kept during all the
dynamical evolution so that the deformation does not relax.
At time 0 a dipole oscillation is induced by a dipole boost.
The resulting dipole oscillations have a lower oscillation
period. Using the deformation parameter € = 0.23 we find
that this period is close to the one observed in the fusion
case and agrees with the phenomenological relation (2).

To get a deeper insight into the dipole oscillation
observed in fusion reactions we have analyzed the time
evolution of its period. From each point on the collective
trajectory this quantity can be inferred from the time
needed to reach the opposite side of the observed spiral.
The resulting evolution is plotted in Fig. 4a. This period
shows oscillations too. On the other hand, we calculated
the monopole moment Qg and the quadrupole moment
(00 which are presented in Fig. 4b. We can see that those
observables oscillations are almost in phase with those in
Fig. 4a. This points toward a possible coupling between
the dipole mode and another mode of vibration. The
evolutions of the monopole and quadrupole moments are
very similar. In particular, they have the same oscillation’s
period around 166 fm/c. Therefore, we conclude that they
originate from the same phenomenon, the vibration of the
density around a prolate shape. This oscillation modifies
the properties of the dipole mode in a time dependent way.

In order to investigate if this density vibration is the
origin of the observed behavior of the dipole period we
can model the induced mode coupling. We consider a
harmonic oscillator with a spring constant which varies
in time at a frequency w. This is a simple way to take
into account the fact that oscillations of the density, which
enter in the mean-field potential of the TDHF equation,
modify the dipole restoring force. This is a way to take
into account the nonlinear behavior of mean-field dynamic.

It is easy to understand that a lower density as well as
an elongated shape induce a weaker restoring force. Thus,
variations of the density profiles in the TDHF equation can
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FIG. 4. (a) Time behavior of the dipole period (solid line)
and its modelization with the Mathieu’s equation (dashed line).
(b) Time evolution of the monopole (dashed line) and quadrupole
moments (solid line).

be modeled by a corresponding variation of the constant
of rigidity in a spring Hamiltonian. In such a model, the
equation of motion becomes the Mathieu’s equation

X w? w
w_é + [1 + B((u_g + Zw—0>cos(wt)}x =0, 3
where wy is the pulsation without coupling and w the pul-
sation of the density’s oscillation while 8 corresponds to
the magnitude of the induced frequency fluctuations. We
have computed the numeric solution of Eq. (3) with the
typical external frequency of the monopole and quadrupole
oscillations. The bare frequency wo and the coupling
strength B have been tuned in order to get the same dipole
oscillation frequency and typical strength as in the full
TDHF calculations. Indeed, because of the presence of
the oscillating term, the observed frequency is different
from the bare one. The numerical solution of the Mathieu
equation shows oscillations with an oscillating period
which well reproduces our self-consistent calculations
with 8 = 0.15 and wq changed by a factor 1.2 from the
observed value Egpr, (see Fig. 4a). From this analysis
it appears that the observed dipole motion corresponds
to a giant vibration along the main axis of an oscillating
prolate shape. The observed modulation of the dipole
frequency is a source of additional spreading of the
resonance line shape.

Using a coherent state picture the maximal elongation

dmax = ;—ZQde ~ 1.4 fm is related to the number of ex-
cited phonons by the expression
MEgpr
Mo = doas — 3 )

where Egpr, = 8 MeV is the energy of the GDR along
the (x) axis and M = %m is the reduced mass of the
neutron-proton system, m being the nucleon mass. It gives
ng = 1.9. Obviously this value is an upper limit because
the mean-field dynamics underestimate the consequences
of the damping since two-body dissipation is not taken into
account. In the same way as Ref. [7,10,23,24], we can
compute the y -decay probability P, over P,, its mean
value in the equilibrium with the expression

_ Fl + Lrevap

NGDR

Y Iw

“UH:U

+ Fevap s &)

where I'eyyp is the rate at which the compound sys-
tem decay (see Ref. [23]) Il is the decaying rate of
the phonons and 7ngpr is the mean number of excited
phonons in the equilibrium. The latter can be estimated
by 7igpr = 3¢~ © where T is the compound nucleus
temperature. For “°Ca at an excitation energy around

96 MeV, we take Teyap = 0.76 MeV, T =7 MeV,
and 7igpr ~ 0.6. It gives §= ~ 1.2 which shows that
the preequilibrium effects are only a correction for this
system since the value for an entrance channel quenching
(ng = 0) of the GDR using the isospin symmetric reaction
2ONe + 2°Ne would lead to % ~ (0.9. It means the first

chance gamma emission will be slightly enhanced by
about a factor 20%. This is in good agreement with the
values reported in the literature [10].

In order to compute the properties of the preequilibrium
GDR in fusion we shall also study nonzero impact parame-
ters. In particular, the interplay of dipole vibration and
deformation can be affected by the rotation. In addition
to the center of mass coordinate system with x along the
beam axis and y perpendicular to the reaction plane we
defined a new coordinate system x’,y’, z/, where x’ is the
deformation axis and y = y’ is the rotation axis. For the
head on head reaction studied before, those two frames are
the same. In this case, for symmetry reasons the dipole mo-
ments along the z/ = z and y axis are zero at every time.

If we consider now a finite b, the symmetry forbids the
vibration to occur only along y. In this case, the ampli-
tude of the oscillations along x’ slightly decreases with the
impact parameter (Fig. 3a, dashed line) whereas an oscil-
lation along z’ appears (Fig. 3b, dashed line). First we can
see that the period of the dipole oscillation perpendicular to
the deformation axis is lower than one along the deforma-
tion axis. It is another consequence for the prolate defor-
mation of the nucleus indeed the energy of this excitation
along z’ should obey the relation Egpr,, = Egpr(l + €).
This relation gives a value of the oscillation’s period of
67 fm/c which is the observed one on (Fig. 3b). The oscil-
lation along z’ shows a lower amplitude than this along x’
(approximatively 1% in relative intensity). This oscillation
along the 7z’ axis results from a weak symmetry breaking
due to the rotation of the system. Indeed, the changing to
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the rotating frame x’,y = y’, z/ leads to the Hamiltonian
with a nondiagonal term

H' = R(OHR '(t) + &J,, (6)

where H' is the Hamiltonian in the rotating frame, « is the
time derivative of the angle between the two frames, and
Jy is the generator of the rotations around y. The last term
induces a motion along the z’ axis from a dipole vibration
along x’. This is indeed what is happening since initially
the dipole mode is along the x’ axis.

If we now compute the number of excited phonons we
see almost no variation of the total phonon number ng
with b. Therefore the conclusions reached for b = 0 can
be extended to the full range of impact parameters b.

Let us now study the role of the incident energy. The
lack of two-body damping in TDHF does not enable us
to go up in energy with this system. So we investigate a
lower energy 0.5 MeV per nucleon which is the Coulomb
barrier. In this case, the number of exciting phonons is 1.0.
This value is lower than one obtained at 1 MeV/u because
the maximum dipole moment decreases with decreasing
energy. Therefore the number of preequilibrium phonons
is lower at lower energy.

We have also investigated the role of the mass of the re-
actions partners to study if the preequilibrium effects sur-
vive in heavier compound systems. We have computed the
“0Ar 4+ “OTi at 1 MeV per nucleon in the center of mass
system (slightly above the fusion barrier). We have ob-
served exactly the same phenomenology with a strong ex-
citation of preequilibrium GDR. The calculated ny = 0.6
is smaller than the n( obtained for lighter nuclei reaction.
This comes from the fact that the reaction with small nu-
clei is less damped than the one involving more nucleons.
However, the preequilibrium GDR is also strong in the
heavier fusion reaction.

In summary, preequilibrium effects related to the N/Z
asymmetry in the entrance channel have been for the first
time investigated using the TDHF approach. The relation
between the mean oscillation’s period and the shape of the
nucleus has been established. Because of the deformation
the average dipole frequency along the deformation axis is
lower than the usual GDR one, while we observe a weak
vibration at higher frequency in the perpendicular direc-
tion in the collision plane. In this direction, the oscillation
occurs only for a nonzero impact parameter. The evolu-
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tion of the period has been modeled by a Mathieu’s spring
model so that the link between the observed phenomena
and the giant dipole resonance has been established. The
frequency modulation due to this nonlinear coupling be-
tween modes plays the role of an additional spreading of
the GDR frequency. The results show that preequilibrium
gamma emission is expected in the case of fusion reaction
with asymmetric N/Z nuclei.
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