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From Computation to Black Holes and Space-Time Foam
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We show that quantum mechanics and general relativity limit the speed n of a simple computer (such
as a black hole) and its memory space I to In2 & t22

P , where tP is the Planck time. We also show that
the lifetime of a simple clock and its precision are similarly limited. These bounds and the holographic
bound originate from the same physics that governs the quantum fluctuations of space-time. We further
show that these physical bounds are realized for black holes, yielding the correct Hawking black hole
lifetime, and that space-time undergoes much larger quantum fluctuations than conventional wisdom
claims — almost within range of detection with modern gravitational-wave interferometers.

DOI: 10.1103/PhysRevLett.86.2946 PACS numbers: 04.70.Dy, 03.67.Lx, 04.62.+v, 89.20.Ff
The past few decades have witnessed amazing growth
in the ability and speed with which computers can process
information. Quantum computation only adds to the
prospect that this exponential growth in information
processing power will continue. But it is natural to ask
whether this growth can go on indefinitely or whether
there are physical laws that impose limitations to it [1,2].
In this Letter we show that indeed the laws of quantum
mechanics and gravitation put considerable bounds on
computation. In particular, the number n of operations per
unit time and the number I of bits of information in the
memory space of a simple computer (simple in the sense
to be made precise below) are both limited by the input
power such that their product is bounded by a universal
constant given by In2 & t22

P , where tP � �h̄G�c5�1�2

is the Planck time formed by the speed of light c, the
quantum scale h̄, and the gravitational constant G. Along
the way, we also show that the total running time T over
which a simple clock can remain accurate and the smallest
time interval t that the clock is capable of resolving are
bounded by T & t�t�tP�2. Interestingly, these bounds
are saturated for black holes. So black holes, in some
sense, may be regarded as the ultimate simple computers
and ultimate simple clocks (though it may be extremely
difficult or even impossible to realize this technological
feat). As a demonstration of the unity of physics, we
show that the physics that sets the limits to computation is
precisely the physics that governs the quantum fluctuations
of space-time [3,4] which, as pointed out recently [5–7],
can plausibly be detected with gravitational-wave interfer-
ometers such as LIGO�VIRGO and LISA through future
refinements. Furthermore, the same physics underlies the
holographic principle. Thus the physics behind simple
clocks, simple computers, black holes, space-time foam,
and the holographic principle is interrelated. It is this
interrelationship that we emphasize in this Letter.

The ingredients we use to derive the physical limits to
computation are the general principles of quantum me-
chanics and general relativity which should suffice for the
physics in the low-energy regime of quantum gravity in
0031-9007�01�86(14)�2946(4)$15.00
which we are interested. [Thus, in what follows, it is un-
derstood that all the time intervals we are dealing with
are much greater than the Planck time, and all the dis-
tances much larger than the Planck length (ctP).] Follow-
ing Wigner [8], one can use quantum mechanics to set
fundamental limits on the mass m of any system that serves
as a time-registering device. Briefly, the argument goes as
follows: If the clock has a linear spread of dR, then its
momentum uncertainty is h̄�dR�21. After a time t, its
position spread grows to dR�t� � dR 1 h̄tm21�dR�21

with the minimum at dR � �h̄t�m�1�2. At the end of the
total running time T , the linear spread can grow to

dR *

µ
h̄T
m

∂1�2

. (1)

But for the clock to give time to within accuracy t, it must
have a small enough spread in position, so small that the
time at which a light quantum strikes it (in order to read
the time) can be determined within the required accuracy t;
thus dR & ct. In other words, we require the wave packet
of the center of mass of the clock be confined, throughout
the running time T , to a region of the size ct. It follows
that, for a given T and t, the lower bound on m reads

m *
h̄

c2t

µ
T
t

∂
. (2)

This limit is more restrictive than that given by Heisen-
berg’s energy-time uncertainty relation because it requires
repeated measurement of time not to introduce significant
inaccuracies over the total running time T . This is one of
two reasons [the other one being Eq. (3) below] that the
physical limits to computation we derive below are more
restrictive than what one may expect [1].

Next, as shown by the present author and van Dam
[3], one can supplement the quantum mechanical relation
Eq. (2) with a fundamental limit from general relativity.
In essence one finds that the minimum time interval that
a clock can be used to measure is the light travel time
across its Schwarzschild radius. The argument is quite
© 2001 The American Physical Society
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simple. Let the clock be a simple light-clock consisting of
two parallel mirrors (each of mass m�2) between which
bounces a beam of light. On the one hand, for the clock
to be able to resolve a time interval as small as t, the
mirrors must be separated by a distance d with d�c &

t. On the other hand, d is necessarily larger than the
Schwarzschild radius Gm�c2 of the mirrors so that the time
registered by the clock can be read off at all. From these
two requirements, it follows that the upper bound on m is
given by [3]

t *
Gm
c3 . (3)

As clocks, black holes saturate this bound (more on this
later).

One can now use Eq. (2) to obtain a bound on the
speed of computation n of any information processor [9].
The mean input power given by P � mc2�T and the
fastest possible processing frequency given by n � t21

are bounded [via Eq. (2)] as

n2 �
1
t2 &

mc2

h̄T
�

P
h̄

. (4)

Thus power limits speed of computation.
Next, by substituting Eq. (2) into Eq. (3) we can relate

T to t as

T & t

µ
t
tP

∂2

. (5)

Thus the better precision a clock attains, i.e., the smaller t
is, the shorter it can keep accurate time, i.e., the smaller T
is. With the Planck time being only about 10243 sec, this
bound on T is of no practical consequence. For example, a
femtosecond (10215 sec) precision yields the bound T &

1034 years.
Now it is time for us to make precise what we mean by

the qualification “simple” characterizing the simple clock
and the simple computer. Alert readers may have already
questioned the validity of Eq. (3), and accordingly also of
the above T-t relation [Eq. (5)]. For example, consider a
large clock consisting of N identical small clocks to keep
time one after another. For large enough N, the T-t relation
and Eq. (3) are violated for the large clock. But note that
this argument is not valid if we consider only those clocks
for which no such separation of components is involved.
They are what we call simple clocks. The same qualifica-
tion will be understood to apply to simple computers. The
origin of this qualification can be traced to the bound given
by Eq. (3). Why should we be interested in simple clocks
and simple computers? For the simple reason that nature
makes use of them. (This point is made clear below when
we derive the holographic principle and when we discuss
the case of black holes.)

Let us use the T-t relation in Eq. (5) to put a limit on
the memory space of a computer. The point is that T�t,
the maximum number of steps of information processing,
is, aside from factors like ln2, the amount of information
I that can be registered by the computer. With the aid of
Eq. (4), the T-t relation yields

I �
T
t

&
1

�ntP�2 �
h̄

Pt2
P

. (6)

While it is not too surprising that the input power P limits
the speed of computation n [as given by Eq. (4)], it is
less expected that power also limits memory space of a
computer in the way given by Eq. (6). We note that Eq. (2)
and Eq. (3) can also be used to give In & mc2�h̄ and
n & h̄��t2

Pmc2�, respectively.
More interestingly, Eq. (6) shows that the product of I

and n2 is bounded by a universal constant

In2 &
1

t2
P

�
c5

h̄G
� 1086 sec22, (7)

independent of the mass, size, and details of the simple
computer. For the numerical value in Eq. (7), we have used
the speed of light in vacuum for c in tP . This expression
(valid for simple computers) links together our concepts
of information, gravity, and quantum uncertainty. We see
below that nature seems to respect this bound which, in
particular, is realized for black holes. The restriction to
simple computers is the price we have to pay for the uni-
versality of this bound. For comparison, current laptops
perform about 1010 operations per second on 1010 bits,
yielding In2 � 1030 sec22.

As intriguing as the physical limits to computation are,
it is perhaps even more amazing that the physics behind
them is also what governs the quantum fluctuations of
space-time. To see this, let us consider measuring the dis-
tance R ¿ ctP between two points. We can put a clock at
one of the points and a mirror at the other point. By send-
ing a light signal from the clock to the mirror in a timing
experiment we can determine the distance. But the quan-
tum uncertainty in the positions of the clock and the mirror
introduces an inaccuracy dR in the distance measurement.
The same argument used above to derive the T-t relation
now yields a similar bound for dR:

dR

µ
dR
ctP

∂2

* R , (8)

in a distance measurement [3,10]. In a time measurement,
an analogous bound is given by Eq. (5) with T playing the
role of the measured time and t the uncertainty [3]. This
limitation to space-time measurements can be interpreted
as resulting from quantum fluctuations of space-time it-
self. In other words, at short distance scales, space-time is
foamy. Thus the same physics underlies both the foaminess
of space-time and the limits to computation and clock pre-
cision. Not surprisingly, these bounds have the same form.
It is remarkable that modern gravitational-wave interfer-
ometers, through future refinements, may reach displace-
ment noise levels low enough to test this space-time foam
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model [3,4], because the intrinsic foaminess of space-time
provides another source of noise in the interferometers that
can be highly constrained experimentally [5,7]. According
to one estimate [5,7], if Eq. (8) is correct, the “advanced
phase” of LIGO is expected to achieve a noise level low
enough to probe tP down to 10241 sec, only about 2 orders
of magnitude from what we expect it (tP � 10243 sec)
to be.

Furthermore, the same physics is behind the holographic
principle, which states that the number of degrees of free-
dom of a region of space is bounded (not by the volume
but) by the area of the region in Planck units [11]. To see
this, consider a region of space with linear dimension R.
Conventional wisdom claims that the region can be par-
titioned into cubes as small as �ctP�3. It follows that the
number of degrees of freedom of the region is bounded by
�R�ctP�3, i.e., the volume of the region in Planck units. But
according to Eq. (8), the smallest cubes into which we can
partition the region cannot have a linear dimension smaller
than �Rc2t2

P�1�3. Therefore, the number of degrees of free-
dom of the region is bounded by �R��Rc2t2

P�1�3�3, i.e., the
area of the region in Planck units, as stipulated by the holo-
graphic principle [7]. [A judicious application of Eq. (6)
can also yield this result.] Thus the holographic principle
has its origin in the quantum fluctuations of space-time.
Turning the argument around, we believe the holographic
principle alone suggests that the quantum fluctuations of
space-time are as given by Eq. (8) [dR * �Rc2t2

P�1�3] and
hence are much larger than what conventional wisdom [12]
leads us to believe (dR * ctP) [13].

Let us now ask for what kind of physical systems are
the physical limits listed above saturated (order of mag-
nitudewise). There is at least one (and very likely only
one) such system: the system of black holes. Since black
holes have an entropy given by the event horizon area in
Planck units [14], the holographic bound is obviously re-
alized. [Alternatively, we can show this by using Eqs. (9)
and (10) below.] Next, consider a black hole as a clock;
then it is reasonable to expect that the maximum running
time of this gravitational clock is given by the Hawking
black hole lifetime

T � TH �
G2m3

h̄c4 (9)

and that the minimum interval that the black hole can be
used to measure is given by the light travel time across the
black hole’s horizon

t �
Gm
c3 . (10)

It is interesting that both Eqs. (9) and (10) can actually be
derived by appealing to Wigner’s two inequalities Eqs. (1)
and (2) and using the Schwarzschild radius of the black
hole as the minimum clock size [9]. Better yet, if we use
Eqs. (2) and (3), we can immediately find that the bound on
T is given by the Hawking black hole lifetime. Thus, if we
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had not known of black hole evaporation, this remarkable
result would have implied that there is a maximum lifetime
for a black hole. Now note that according to Eq. (10),
the limit on t as shown in Eq. (3) is saturated for a black
hole. Furthermore, using Eqs. (9) and (10) one can easily
show that the bound given by Eq. (2) is saturated. It then
follows that all the subsequent bounds [from Eqs. (4)–(7)]
are saturated for black holes. As a check, we can combine
Eqs. (9) and (10) to yield T�t3 � t22

P , which saturates the
T-t bound given in Eq. (5). On the other hand, when a
black hole is considered as an information processor with
power P � mc2�TH � h̄c6�G2m2 , we can use Eq. (10)
to obtain n2 � P�h̄, which realizes the bound given by
Eq. (4). Equations (9) and (10) can also be used to yield
I � T�t � h̄�Pt2

P , which saturates the bound given by
Eq. (6). Finally, with both n- and I-bounds saturated, the
universal bound on computation given by Eq. (7) is also
saturated for black holes. All these results reinforce the
conceptual importance of black holes as the simplest and
most fundamental [15] constructs of space-time, which
set the universal limits to computation, clock precision,
and numbers of degrees of freedom. These properties of
black holes lead us to believe that their very existence
lends support to the physical bounds presented in this paper
and the relatively large quantum fluctuations of space-time
given by Eq. (8). By the same token, detection of the
space-time foam [Eq. (8)] will be an indirect verification
of Hawking black hole evaporation. From our perspective,
black hole physics is intimately related to space-time foam
physics.

Finally, a comment on the main difference between
our approach and that of Lloyd on the physical limits to
computation in Ref. [1] is in order. Lloyd’s use of the
Heisenberg energy-time uncertainty principle to find n is
tantamount to putting T � t in Wigner’s inequality
[Eq. (2)]. In other words, while we have introduced two
time scales T and t, Lloyd has introduced only t. But as
the case of black holes shows, these two time scales are
not the same in general. For a 1-kg black hole, according
to Lloyd [1], n � 1051 sec21 and I � 1016 bits; but
according to us, n � 1035 sec21 and I � 1016 bits [16].
We conclude that we disagree with the limits given in
Ref. [1].

To summarize, we have shown that the laws of quantum
mechanics and gravitation, which govern the quantum fluc-
tuations of space-time, also set physical bounds on com-
putation and on the precision of clocks. Power limits a
simple computer’s speed of computation n and its mem-
ory space I . Their product obeys the universal bound given
by In2 & t22

P � 1086 sec22. This bound is realized for
black holes. The same physics underlies the holographic
principle. We have also argued that the quantum fluctu-
ations of space-time are actually much larger than what
the folkfore suggests. We urge the experimentalists, espe-
cially those in the gravitational-wave interferometer field
[5,7,10], to strive to detect them.
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