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Deflection of Spacecraft Trajectories as a New Test of General Relativity
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We derive a simple formula which gives the general relativistic deflection of a spacecraft, idealized as
a point mass, for all values of the asymptotic speed V` �0 # V` # 1�. Using this formula we suggest a
new test of general relativity (GR) which can be carried out during a proposed interstellar mission that
involves a close pass of the Sun. We show that, with foreseeable improvements in spacecraft tracking sen-
sitivity, the deflection of a spacecraft’s trajectory in the gravitational field of the Sun could provide a new
test of GR.
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Recent decades have witnessed significant improve-
ments in the sensitivities of the “classic” tests of general
relativity (GR): the gravitational redshift, light deflection,
the Shapiro time delay, and the precession of the perihelion
of Mercury [1–4]. To a great extent these improvements
have been made possible by the introduction of new tech-
nologies, such as the Mössbauer effect and atomic clocks
in the case of the redshift. Other related tests of GR,
including lunar laser ranging [2] and tests of both the weak
equivalence principle and the gravitational inverse-square
law [5], have also benefited from the use of new technol-
ogy. In this paper we propose a new test of GR, namely,
the deflection of a spacecraft trajectory in the Sun’s
gravitational field. As with other tests of GR, this test also
capitalizes on recent and foreseeable improvements in
technology, specifically in both spacecraft tracking and in
drag-free systems. Our attention will focus specifically on
the small Interstellar Probe mission [6] which is the only
mission currently under consideration capable of carrying
out a GR test of the type we are proposing.

We begin by assuming that a photon or a spacecraft (ide-
alized as a massive particle) approaches a gravitating body
from a very great distance (starting with velocity V2

` ) and
is deflected by gravity. It recedes to a great distance with
final velocity V1

` (see Fig. 1). Let f�r� be the angle, mea-
sured positively (by right-hand rule) from the inertial di-
rection ĵ to the position vector direction, êr , as shown in
Fig. 1. We then define f�r ! `� � f`, and also note
that f�rp� � 2p�2, where rp is the distance of closest
approach as shown in the figure. From the symmetry be-
tween the approach asymptote and the departure asymp-
tote, we can express the total deflection due to gravity,
Dfdef, as

Dfdef � 2�f` 2 f�rp�� 2 p . (1)

We can now make use of the quadrature integral given by
Weinberg [1],
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where A�r� and B�r� can be expanded in terms of the
constants b and g of the parametrized post-Newtonian
(PPN) metric [2],
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In Eqs. (3) and (4), G is the Newtonian gravitational con-
stant, and E and J are constants given by

E � 1 2 V 2
` , (5)

J � rp�1�B�rp� 2 1 1 V 2
`�1�2. (6)

Upon substituting Eqs. (3)–(5) into Eq. (2), we obtain, to
order G2,
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ĵ

î
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FIG. 1. Deflection of a spacecraft trajectory in a gravity field.
The spacecraft approaches with asymptotic velocity V2

` , passes
through periapsis at distance rp , and leaves with asymptotic
velocity V1

` . The spacecraft coordinates are given by the radial
distance r from the center of the attracting body and the angle
f with respect to the inertial direction ĵ.
© 2001 The American Physical Society
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After performing the integration in Eq. (7) and substituting for J from Eq. (6), we can (after some tedious algebra)
express Eq. (1) in the form
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e � GM�rp � m�rp ; x � V 2
`�e , (9)

where we have neglected terms of order e2 and higher. We
recognize in Eq. (8) the classical nonrelativistic deflection
of a spacecraft trajectory, DfNR,

DfNR � 2 sin21

µ
1

1 1 x

∂
. (10)

Equation (10) gives the total turn angle of the vector V`

(i.e., the angle between the approach velocity, V2
` , and the

departure velocity, V1
` ) based on Newton’s law of grav-

ity. If we substitute V` � 1, or x � 1�e, into Eq. (10),
we obtain the deflection of light predicted by Newtonian
physics,

DfNR
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Similarly, setting V` � 1 in Eq. (8) yields
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where terms O�e2� and higher have been dropped. Equa-
tion (12) yields Einstein’s formula for the deflection of
light when g is set to unity: twice the value given by
Eq. (11).

We wish to obtain a formula that conveniently compares
the general relativistic effect on spacecraft deflection to
light deflection. One way to proceed is to define a quantity
Df̄ obtained by subtracting the (often large) angle DfNR
in Eq. (10) from the expression in Eq. (8), and to then
normalize the result (i.e., divide) by 2e�1 1 g�:

Df̄ � �Dfdef 2 DfNR���2e�1 1 g��
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For Einstein’s theory, b � g � 1 and Eq. (13) becomes

Df̄E �
1
2

µ
x

2 1 x

∂1�2

1
�3�2�

�2 1 x�
cos21

µ
21

1 1 x

∂
.

(14)

The function Df̄E is plotted in Fig. 2. We note from
Eq. (14) that, when V` � 1, then D f̄E	 0.5, as ex-
pected: the ratio of the purely relativistic bending of light
divided by the total bending of light (including the New-
tonian bending) is one half. In contrast, for a parabolic
trajectory V` � 0 (i.e., x � 0), and Df̄E�0� � 3p�4 �

2.36. When x � 1, then V` �
q

GM�rp which is the cir-
cular speed at a radius rp . Thus the x variable is con-
veniently scaled in terms of “circular speeds” at rp . For
x � 1, Df̄E � 1.34. We see that there are many cases
where the relativistic deflection of a spacecraft trajectory
is greater than the deflection of light for the same periapsis
distance, rp . The question to be answered is whether an
experiment can be devised to measure this effect.

As noted previously, Mewaldt et al. [6] have proposed
the Small Interstellar Probe mission which would cross the
solar wind termination shock and heliopause and penetrate
into nearby interstellar space. To accomplish its scientific
objectives, the probe must attain V` 
 1.3 3 1024. To
achieve this speed a number of gravity assist scenarios are
suggested [6], most of which involve a final close flyby
of the Sun at 4 solar radii. At perihelion a maneuver is
performed to change the speed of the spacecraft by sev-
eral km�s in order to send the probe off on its hyperbolic
trajectory. The Interstellar Probe mission presents an ideal
trajectory to observe the relativistic deflection, provided
that the effects of nongravitational forces and the New-
tonian deflection can be accounted for. We will use this
mission for our numerical example.

Let us first consider how accurately the relevant parame-
ters must be known in order to discriminate between the

FIG. 2. Plot of the function Df̄E in Eq. (14). As discussed
in the text, Df̄E gives the scaled contribution of GR to the
deflection, plotted versus the scaled speed x. For an incident
light ray Df̄E � 1�2.
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relativistic and Newtonian deflections. By using rp � 4 3

6.96 3 105 km � 2.78 3 106 km and GM � 1.475 km,
we find e � 5.30 3 1027 and x � 3.02 3 1022. Insert-
ing these values of e and x into Eq. (14), and multiply-
ing by 4e, gives the total general relativistic deflection
DfE � 4.67 3 1026 rad � 0.96300. On the other hand,
the nonrelativistic Newtonian deflection is, from Eq. (10),
DfNR � 2.66 rad � 152±, which is very large compared
to the relativistic deflection. Thus in order to observe the
relativistic deflection we must have very precise knowl-
edge of the Newtonian contribution. (Of course in the case
of the Interstellar Probe we will only observe the departure
asymptote, namely, half the deflections given by DfE and
DfNR.) We proceed to assess the sensitivity of measur-
ing the relativistic effect, which will be proportional to the
knowledge errors in the nonrelativistic effect.

We can view the rotation induced by general relativity
on a hyperbolic trajectory as being a shift in the argument
of periapsis of the probe trajectory due to the gravitational
interaction, analogous to the advance in Mercury’s perihe-
lion. Thus, in order to determine if this is a measurable
effect, we must devise a series of ideal measurements to
estimate the shift in argument of periapsis between peri-
helion and escape. At perihelion the argument of periapsis
is related to the unit vector of the probe (assuming orbit
plane coordinates) by the equation

r̂p � cos�v�î 1 sin�v�ĵ , (15)

where v is the argument of periapsis (arbitrarily set to zero
in Fig. 1) and î and ĵ are unit vectors of our coordinate
frame. When the probe is sufficiently far from the Sun
on its escape trajectory, its asymptote can similarly be
specified by the unit vector

r̂` � cos�v0 1 u`�î 1 sin�v0 1 u`�ĵ , (16)

where v0 is the new (shifted) argument of periapsis, and
u` is the limiting value of the true anomaly of the probe
as it escapes from the Sun. In principle, each of these unit
vectors can be measured, and the shift in argument of pe-
riapsis can be computed by comparing them. Specifically,

jr̂p 3 r̂`j � sin�v0 2 v� cosu`

1 cos�v0 2 v� sinu` , (17)

and we define v0 2 v � Df, which is the quantity we
wish to measure. Noting that Df ø 1, cosu` � 21�e,
and sinu` �

p
e2 2 1�e, where e is the eccentricity, we

can solve for Df in terms of measurable quantities,

Df �
p

e2 2 1 2 ejr̂p 3 r̂`j . (18)

We next take the variation �d� of the measurement Eq. (18)
to compute how errors in measuring the eccentricity and
the unit vectors contribute to errors in the measured value
of Df:
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which represents the effect of variations in the angular
position of the probe at periapsis and at escape. Careful
evaluation of each term for a general flyby shows that the
expression in square brackets in Eq. (20) can be expressed
as

e�· · ·� � edjr̂p 3 r̂`j � Dr`�r` 1 Drp�rp , (21)

where D denotes errors in distance measured normal to the
radius vector. Since the eccentricity is, in turn, a function
of specific measurable quantities via the relation e � �1 1

�rpV 2
`�m��, we have

de � �e 2 1� �drp�rp 1 2dV`�V` 2 dm�m� . (22)

where drp denotes variations along the radius vector. If we
combine the previous results and assume that the different
measurements are uncorrelated, then the overall Gaussian
uncertainty in Df is
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where s denotes the Gaussian standard deviation of the
measured quantity.

In general, the uncertainties in the first terms will be
negligible compared to the measured uncertainties sDrp

and sDr`
. Additionally, at escape the probe unit vector

direction can be measured extremely accurately using
established differential Very Long Baseline Interferometry
�DVLBI� techniques [7]. This leaves the down-track
measurement of the probe position at perihelion as the
dominant error source, so that sDf 
 sDrp �rp . Current
navigation capability can reduce sDrp to the order of
1–10 km [8]. Taking sDrp � 1 km for our numerical
example (where e is computed to be 1.03), we find that
sDf � 3.6 3 1027 rad which, by comparison to half the
deflection angle DfE, represents an error of 16%. If this
measurement uncertainty were reduced to the order of
10 m, then the contribution of the general relativistic PPN
parameters b and g could be found to three significant
figures. Measurement uncertainties of this order imply
Earth-based measurement accuracies on the order of
0.1 nanoradians (nrad). Based on operationally demon-
strated measurements of the Deep Space Network’s
DVLBI system, its estimated accuracy at present is of order
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5 nrad. Observations of natural radio sources made with
the DVLBI measurement technique have demonstrated
accuracies of 0.8 nrad, and the fundamental limit on
such measurements is of order 0.01 nrad [9]. This is
substantially better than the 0.1 nrad accuracy required
to measure b and g at the �1023 level. The feasibility
of developing this technology to the levels of accuracy
needed for our proposed experiment and for near-Sun
observations is considered in Ref. [10]. We can presume
that the increases in accuracy of DVLBI will be accompa-
nied by corresponding improvements in the infrastructure
needed to support these measurements, which would
likely be developed in concert with improved DVLBI
technology. In order to discriminate the effect of the Sun’s
quadrupole moment J2 (which will introduce an error of
about 1% in sDf), a highly inclined orbit is necessary
[8]. To disentangle the parameters b and g in Eq. (13),
we rely on recent experiments [11] which determine g to
a precision of �1023.

In order to extract the general relativistic contribution to
the spacecraft’s trajectory it will be necessary to deal with
perturbing nongravitational forces. For a typical spacecraft
these forces arise from radiation pressure, solar wind, in-
terplanetary dust, atmospheric drag, magnetic fields, pro-
pellant leakage, and spacecraft radiation [4,12]. Such
perturbations can be sidestepped by employing a drag-
free spacecraft which uses small thrusters to null out the
nongravitational forces. Fortunately the necessary drag-
free technology is already under development, since it is a
prerequisite for the ongoing Gravity Probe B mission [13],
as well as for the proposed STEP [14] and Galileo Galilei
[15] missions.

We conclude that a variation of the proposed Interstellar
Probe mission could measure the general relativistic PPN
parameters b and g to within 16% with current technol-
ogy. If the perihelion of the spacecraft is determined to
within 10 m, then this uncertainty decreases to 0.2%. This
level of accuracy should be achievable in the foreseeable
future [7,9,10]. This would lead to a new and indepen-
dent check of GR by utilizing the deflection of spacecraft
trajectories.
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