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We study the statistical mechanics of a two-dimensional Bose gas with a repulsive delta-function
interaction, using a mean-field approximation. By a direct counting of states we establish that this model
obeys exclusion statistics and is equivalent to an ideal exclusion-statistics gas. We also show that this
result is consistent with a full quantum-mechanical treatment of a quasi-two-dimensional system.
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The concept of fractional exclusion statistics (FES) pro-
posed by Haldane in 1991 [1] has proved to be a useful
concept to describe the statistical mechanics and thermo-
dynamics of certain one-dimensional models [2–5].

The basic idea of FES is that adding a number of par-
ticles, DN , to a system blocks Dd of the states avail-
able for the next particle according to the linear relation
Dd � 2gDN . Intuitively this corresponds to a repulsion
between the particles, but only very special types of in-
teractions give rise to this type of exclusion of single par-
ticle states. In fact, all established examples of FES are
in one dimension (or are effectively one-dimensional, like
charged particles restricted to the lowest Landau level by a
strong magnetic field [4–6]). Thus, the observation [7,8]
that, in a Thomas-Fermi approximation, a two-dimensional
Fermi or Bose gas with short range repulsive interactions
has the same energy and number density as an ideal FES
gas (treated in the same approximation) deserves further
study. It is not obvious why this kind of interaction should
give rise to the exclusion of states in the sense of Haldane,
and it is the purpose of this Letter to provide a statistical
mechanics derivation.

We start from the two-dimensional Hamiltonian

H �
NX

i�1

µ
p2

i

2m
1 V ��ri�

∂
1

p h̄2

m
g

NX
i,j

d2��ri 2 �rj� (1)

that has been used as a model for atoms in Bose conden-
sation experiments using highly asymmetric traps [9,10].
The particular form of the delta function is chosen as to
reproduce the s-wave scattering phase shifts in three di-
mensions, and the dimensionless coupling g is given by

g � 2
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where a is the (three-dimensional) scattering length and lz

is the out of plane extension of the asymmetric trap, which
is harmonic in the transverse direction with a frequency
v � h̄�ml2

z [8,9]. (Our definition of g differs from that
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in [8] for reasons that become clear below.) We assume
that the temperature is sufficiently high above the transition
temperature that the only relevant mean field is the density,
n, and that the fluctuations are small enough to be ignored.
We return to these issues at the end of the paper.

Before we analyze the statistical mechanics of (1), we
give a simple thermodynamic argument as to why, at the
mean-field level, we expect exclusion statistics. For sim-
plicity we consider the case with a constant external po-
tential V , so that the density, n, is also constant. In a
mean-field approximation, and for a fixed number of par-
ticles, the interaction energy term in (1) just amounts to a
constant shift of the energy density,
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where kT � 1�b is the temperature and lT �p
2p h̄2b�m is the thermal wavelength. We have used

that for a free Bose gas in two dimensions the pressure
equals the energy density and substituted the pertinent
virial expansion as expressed in the Bernoulli numbers
Bn [11]. This expression is consistent with the system
being an ideal FES gas in two dimensions which is known
to have a pressure equal to the energy density and which
differs from a free Bose gas only by a shift 1

2gl
2
T in the

second virial coefficient [12].
Let us now consider the statistical mechanics of (1) and

assume that the potential V is slowly varying compared
with the thermal wavelength, lT . We then divide the sys-
tem into cells of area b2, where lT ø b ø j �=V�V j, and
study the statistical mechanics in each cell. In a mean-field
approximation, the one-body Hamiltonian in the cell �
becomes
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where we approximate the potential in the cell with the
constant V ��r�� with �r� the position of the center of the
cell. Also n��r�� � N��b2 is the mean number density in
the cell �, with N� ¿ 1 the corresponding average number
of particles. In going from (1) to (4) it is important to cor-
rectly incorporate the effect of Bose statistics [13]. There
is an extra factor of 2 in the interaction term in the Heisen-
berg equation for the quantum field operator as compared
to the similar looking Gross-Pitaevskii equation for a clas-
sical Bose field. This also implies an extra factor of 2 in
the mean-field one-body Hamiltonian (4), and here we dif-
fer from the treatment in [8].

The total energy E� is, as usual, not simply the sum of
the one particle energies e

�
i of (4) but is given by
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where the last term compensates for the double counting
of the interaction energy.

The number d� of available one particle quantum states
in the box � below some energy e�, given that there are
already N� particles present, follows from (4)
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with e
�
kin the kinetic energy. Note that g � 1 corresponds

to free fermions, and for general g, this relation immedi-
ately hints at exclusion statistics; the number of states in
the box decreases linearly with N�. For a Hamiltonian of
the form (4), this is true only in two dimensions.

We can, however, still not conclude that our system is
identical to an ideal FES gas. Haldane’s original defi-
nition of FES was for systems with a finite dimensional
single particle Hilbert space, but it was later generalized as
to include ideal gases, and the corresponding distribution
functions were derived [3,14]. We now demonstrate that
the box Hamiltonian H� in (4) indeed describes an ideal
FES gas.

Because of (5), a microstate in the box can be labeled
by a set of integers 0 # k1 # k2 · · · # kN�

, with the cor-
responding energy,
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Note that the integers ki are not proportional to the mo-
menta; they are proportional to the kinetic energy and cor-
respond to the number of states below the energy e

�
i . Of

course, the real energy eigenvalues are not equally spaced,
but we assume that the box is large enough for this effect
to be negligible.

Next we introduce the quantities k̃i by

k̃i � ki 1 g
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with u�x� being the step function, and rewrite the energy
as a sum of “pseudoenergies,” ẽ
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The exclusion properties of this system are now manifest
since (8) implies that the pseudoenergies must satisfy
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It should be noted that the relation (6) holds only be-
cause the kinetic energy and the number density scale as
the same power of the cell size b. This is true for the
present case of particles with quadratic dispersion in two
dimensions, but also for particles in one dimension with
linear dispersion, which is the case for anyons in the low-
est Landau level, or equivalently, chiral particles on a circle
with an N2-type interaction [6]. In fact, the two models
studied in this paper and in [6] can be exactly mapped onto
each other by identifying the k̃i in (8) with the “pseudo-
momenta” introduced in [6].

The interaction strength g enters only in the combina-
tion a � gh̄2. Recently it was shown that by taking the
limit g ! `, h̄ ! 0 with a fixed, a can be interpreted
as a classical exclusion statistics parameter [15]. Using
the Thomas-Fermi approximation for the system (1), and
taking the high T limit, it is easy to show that the density
is given by n��r� � nB��r� �1 1 a

2p

kT nB��r��21, where nB��r�
is the density of a noninteracting Stefan-Boltzmann gas in
the same potential V ��r�. Note that all h̄ dependence is
gone and that the classical density is lowered because of a
classical statistics effect.

The formal proof that the exclusion property (10) cor-
responds to an ideal FES gas as defined in [14] is a
straightforward modification of the one given in [16] for a
multispecies system in the fermionic representation: Go-
ing to a continuum description with “momenta” pi and
pseudomomenta p̃i defined as

pi �

µ
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µ
2p h̄

b
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replacing the sums over k and k̃ by integrals in the usual
way, and denoting the corresponding particle densities in
momentum space by n�p� and r� p̃�, respectively, one
finds the continuum version of Eq. (8),

p̃ � p 1 g
Z

dp̃0 r� p̃0�u�p̃ 2 p̃0� . (12)

Furthermore one has to demand conservation of the num-
ber of particles when changing variables from p to p̃, i.e.,
n�p�dp � r� p̃�dp̃. Combining this with Eq. (12) gives

n�p� �
r� p̃�

1 2 gr�p̃�
. (13)
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Inserting this into the standard expression for the bosonic
nonequilibrium entropy,

S � 2k
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exactly reproduces the entropy of an ideal FES gas [3,14],
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from which all thermodynamics follows.
Since we have explicitly ignored both the possibility of

a quantum condensate and of pairing fields other than the
density, the results of this paper (and those of Ref. [8]) can
not be used for temperatures below or in the vicinity of
the Bose condensation transition Tc. This is true irrespec-
tive of whether this transition is of the Kosterlitz-Thouless
type or not [17]. Rather our results should be relevant in
a temperature regime where the exclusion statistics, due to
the repulsive interaction, corresponds to a small correction
to the ideal Bose gas. It is an interesting open question
whether the quasiparticles above a two-dimensional Bose
condensate can also be described using exclusion statistics.
To answer this question one would analyze the correspond-
ing statistical mechanics in a more sophisticated mean-field
approximation that includes effects of phase coherence and
pairing mean fields [13].

So far our analysis has been entirely in the context of
mean-field approximations. It is an interesting question
whether the full quantum problem of a two-dimensional
gas with a delta function interaction also allows a de-
scription in terms of exclusion statistics in some range of
temperatures. Although the interaction naively does not
involve any dimensionful parameter, it is known that a pure
delta function interaction gives rise to short distance sin-
gularities and requires a renormalization of the interaction
strength which introduces a renormalization scale and thus
breaks scale invariance [18]. In quantum mechanics, the
second virial coefficient is related to the scattering phase
shifts by the Beth-Uhlenbeck formula [19]. The s-wave
scattering phase shifts in the quasi-2d problem can be cal-
culated as
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where p is the relative momentum in the two-body scat-
tering process and g is related to the (three-dimensional)
scattering length by (2). To derive (16) one can either em-
ploy the Greens function method used in [17] or directly
match the wave functions as explained in [20]. Note that
the phase shift does depend on the momentum p via the
renormalization scale leff

z , which up to a numerical factor
2932
equals the transverse extent lz of the quasi-2d system. In a
strict two-dimensional system with a delta function interac-
tion, there is always a single bound state, which, however,
is not present in the quasi-2d case. The Beth-Uhlenbeck
formula then gives the following shift in the pressure due
to interactions [21]:

DP � 2�nlT �2 2kT
p

Z `

0
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. (17)

In general, the integral in (17) is a function of lz�lT ,
but in the relevant parameter range, a ø lz ø lT , it is
approximately constant and we get to leading order in g,

DP �
1
2

kT �nlT �2g , (18)

in perfect agreement with (3). We can thus conclude
that for temperatures and couplings in the range specified
above, a full quantum mechanical treatment is consistent
with the mean-field approximation used earlier. It is an
open question whether there are any corrections to higher
virial coefficients.
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