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Dark Solitons in a Two-Component Bose-Einstein Condensate

P. Öhberg and L. Santos
Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany

(Received 18 October 2000)

The creation and interaction of dark solitons in a two-component Bose-Einstein condensate is inves-
tigated. For a miscible case, the interaction of dark solitons in different components is studied. Various
possible scenarios are presented, including the formation of a soliton-soliton bound pair. We also analyze
the soliton propagation in the presence of domains, and show that a dark soliton can be transferred from
one component to the other at the domain wall when it exceeds a critical velocity. For lower velocities
multiple reflections within the domain are observed, where the soliton is evaporated and accelerated after
each reflection until it finally escapes from the domain.
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The realization of Bose-Einstein condensation (BEC) in
weakly interacting atomic gases [1] has opened the possi-
bility to investigate nonlinear properties of atomic matter
waves. Several remarkable phenomena, which strongly re-
semble well-known effects in nonlinear optics (NLO), have
been observed in BEC, such as four-wave mixing [2], vor-
tices [3,4], and dark solitons [5,6].

A dark soliton in BEC is a macroscopic excitation of the
condensate with a corresponding positive scattering length,
which is characterized by a local density minimum and
a phase gradient of the wave function at the position of
the minimum [7]. The shape of the dip does not change
due to the balance between kinetic energy and repulsive
atom-atom collisions. The recent creation of dark solitons
in BEC by means of phase imprinting (PI) [5,6] has posed
several fundamental questions concerning the dynamics,
stability, and dissipation in such systems [8–11]. Also,
the interaction of two solitons in a BEC has been experi-
mentally addressed [12].

In the recent years, the development of trapping
techniques has allowed the creation of multicomponent
condensates, which are formed by trapping atoms in
different internal (electronic) states [13,14]. The multi-
component BEC, far from being a trivial extension of the
single-component one, presents novel and fundamentally
different scenarios for its ground state [15] and excitations
[16]. In particular, it has been observed that the BEC can
reach an equilibrium state characterized by the separation
of the species in different domains [14].

In the present Letter, we analyze the creation, propa-
gation, and interaction of dark solitons in a two-
component condensate. In this more complex scenario,
novel phenomena can be expected, as has already been
reported in the context of NLO [7]. We show that the
dynamics of the soliton interaction is completely different
from the single-component case. In particular, two dark
solitons in a single-component BEC always repel each
other [17], whereas the opposite is true for two solitons
interacting in the two-component case [18]. We consider
two situations. For the first one, the two components are
miscible, and one soliton is created in each component.
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We show, both analytically and numerically, that this
system presents nontrivial dynamics, which includes the
formation of a soliton-soliton bound state. The properties
of such a binary bound state, in particular the period of its
oscillations, should be sensible to dissipation effects and
therefore constitutes an excellent tool to analyze these ef-
fects. In addition, the dissipation can be studied in a much
clearer and controllable way than in current experiments
with single-component BEC, since the soliton-soliton
interaction keeps the solitons within a central region of
the trap of several healing lengths. In the second scenario,
the propagation of a soliton in a two-component BEC
with domains is considered. In particular, we demonstrate
that the soliton can be transferred from one component
to the other at the domain wall. Below a critical velocity
the soliton is reflected, performing multiple oscillations
inside the corresponding domain. At each reflection the
soliton is partially evaporated by emission of phonons,
and accelerates until it eventually escapes through
the wall.

In the following we consider a trapped BEC with two
components, where the dynamics takes place only in
one dimension due to the strong trap confinement in the
transverse direction. This approximation is valid if the
mean-field interaction is smaller than the typical energy
separation E� in the other directions [19], and has been
successfully employed in the analysis of dark solitons
in single-component condensates [6]. For sufficiently
low temperatures the dynamics is well described by two
coupled Gross-Pitaevskii equations
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where V �x� is the trap potential, mj is the chemical poten-
tial of component j, gjl � 4p h̄2ajl�mS is the coupling
constant (averaged over the frozen-out transversal direc-
tions) between the components j and l with the transversal
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area S, m is the atomic mass, and ajl the scattering length
between j and l � j, l � 1, 2�.

We consider the situation in which a dark soliton is
created in one or in both components. To generate dark
solitons we use the well established PI technique [20], al-
though other methods [21] could in principle be employed.
This method consists of applying a homogeneous potential
U generated by the dipole potential of a far detuned laser
beam to one part of the condensate. The potential is pulsed
on for a time tp , such that the wave function locally ac-
quires an additional phase factor exp�iUtp�h̄�. The pulse
duration is chosen to be short compared to the minimal cor-
relation time of the system h̄�m, with m � max�m1, m2�.
This ensures that the effect of the light pulse is mainly a
change in the phase of the condensate, whereas changes
of the density during this time can be neglected. Note,
however, that due to the imprinted phase at larger times
an adjustment of the density in the condensate appears,
leading to the formation of the dark soliton and also ad-
ditional structures. In principle the described method can
be employed to selectively create a soliton in only one of
the components, or to create two different solitons in each
one. The creation of a soliton in one component modifies
the density in the other one, due to the coupling in Eq. (1).
But as we show below, under appropriate conditions, soli-
tons can also be created in a two-component condensate.
In the following, given a particular PI, we define the im-
printed velocity as the one corresponding to a soliton cre-
ated by the same PI in a single-component BEC.

We consider first the case in which one soliton is cre-
ated in each component. This situation can be analyti-
cally studied by employing a variational approach [22,23].
We assume for simplicity the solitons are moving in a ho-
mogeneous condensate of densities n1 � n2 � n0. This
situation corresponds to a very elongated trap with equal
concentrations of both components. Additionally we as-
sume that the coupling constants are g11 � g12 � g22 �
g. The latter assumption matches well the experimen-
tal conditions [3,14]. As variational wave functions the
single-component soliton solutions [17] are considered,
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where m1 � m2 � m, �q � dq�dt, 2q�t� denotes the rela-
tive distance between the solitons, cs �

p
gn0�m the

sound velocity, and l0 � h̄�pgn0m is the healing length
for a single component. Equations (2a) and (2b) represent
a kink-antikink situation, i.e., when the phase fronts of
the solitons are facing each other. The case kink-kink,
when both phase fronts are in the same direction, is also
discussed below. The previous expressions describe a
symmetric situation around x � 0, or equivalently they
describe the system in the center of mass frame.

The problem of solving Eq. (1) can be restated as a
variational problem [22,23], corresponding to the station-
ary point of the action related to the Lagrangian density,
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Our goal is to find the equation which governs the evolu-
tion of q�t�. In order to do that, we insert the variational
Ansatz (2a) and (2b) into Eq. (3), and calculate an effec-
tive Lagrangian L �

R
dx L which becomes
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where b�q, �q� �
p

1 2 �q2�c2
s �q�l0�. The equation for

q�t� is given by the Euler-Lagrange equation d
dt � ≠L

≠ �q � 2
≠L
≠q � 0, which we have solved for different initial condi-
tions, obtaining the trajectories in the phase space �q, �q�
(Fig. 1). For sufficiently small deviations from �0, 0�,
the system behaves periodically, i.e., the solitons form a
bound pair (soliton molecule). For bound trajectories with
�q�0��cs , 0.4 at q � 0, the frequency of the oscillation is
4�
p

15 cs�l0. Contrary to single component solitons [17],
the free trajectories are characterized by the acceleration
of the approaching solitons, and the deceleration of the
outgoing ones. For q * 2l0, L becomes the sum of two
single-soliton Lagrangians and q̈ vanishes. For practical
purposes the trajectories can be considered periodic if they
cross �q � 0 at q & 2l0, and free otherwise. The free tra-
jectories close to the periodic ones are squeezed together at
q � 0 and �q � �qc � 0.67cs, which constitutes the criti-
cal escape velocity.

The kink-kink situation is, however, different, as re-
cently shown in the context of multimode NLO [24]. In
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FIG. 1. Phase map of the kink-antikink relative motion.
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this case the solitons move in the same direction with
velocities �q1 and �q2, such that in our formalism 2 �q �
�q2 2 �q1. Contrary to the kink-antikink case, the solitons
form a molecule which can never be broken. The special
kink-kink case �q � 0, �q � 0� coincides with the optical
vector dark soliton solution [18,25].

We have numerically analyzed the dynamics of the sys-
tem by solving Eq. (1) using standard split operator tech-
niques. We have studied the creation of a soliton in
each component using the PI method. We consider the
case of a BEC with equal linear density in both com-
ponents, n � 2.0 3 108 cm21, in a box trap and with
g11 � g22 � 1.05g12. This choice allows a homogeneous
region of equal densities for both components, and there-
fore provides a better quantitative comparison with the
analytical model. However, for more general nonhomo-
geneous situations a similar qualitative picture has been
observed in simulations.

We restrict ourselves here to the case kink-antikink. The
creation of a soliton in one component perturbs the density
of the other one. We observe that if the PI is applied in
order to create two solitons which are initially separated
by distances larger than approximately 4l0, the fluctua-
tions in the densities prevent the formation of the solitons.
Therefore, the solitons have to be created initially with
q�0� , 2l0. The soliton in each component induces a lo-
cal density increase centered at the position of the soliton
in the other component. In other words, the solitons are
filled by the other component. Therefore, they become
wider and slower than a corresponding single-component
soliton. This fact introduces some quantitative corrections
to the analytical estimates, although such corrections are,
in fact, small.

Figure 2 shows the case of two solitons with an im-
printed velocity �q � 0.81cs (corresponding to an initial
PI razor of 8l0 [5,6]). For such velocity, the solitons form
a molecule, as described above. The soliton separation,
which can reach 4l0, depends on the imprinted velocity.
We have numerically found a critical imprinted velocity
�qc � 0.83cs at which the solitons become free, in good
agreement with the variational approach.

Figure 3 shows the evolution of the solitons correspond-
ing to an imprinted velocity �q � 0.89cs (dashed line in
Fig. 3). The solitons indeed move apart much slower with

FIG. 2. Density of component 1 for the kink-antikink case with
q�0� � 0 and �q�0� � 0.81cs. Darker regions are those with
less density. Component 2 is the mirror image of component 1
around x � 0.
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�q � 0.095cs. The closer the imprinted velocity is to �qc

the larger the soliton deceleration is, in agreement with
our analytical results. Therefore, the deceleration is an
effect of the soliton-soliton interaction and not a conse-
quence of the filling of the soliton by the other component
[26]. We have also depicted in Fig. 3 the trajectory after
the reflection from the box boundaries, in order to illus-
trate the behavior when both solitons collide. As predicted
from our variational approach, it can be observed that the
solitons are accelerated when approaching each other, and
decelerated after crossing. The maximal velocity at q � 0
is comparable to the critical velocity.

In the last part of this Letter we analyze the soliton
propagation in separate domains. If the relation between
the coupling constants and densities is appropriately cho-
sen, separate domains of each component can be produced
[14]. We consider the case in which a soliton is created
in one of the components and move towards the domain
wall. In order to illustrate the different possible scenarios,
we study the situation in which g12�g11 � 1.7, g22�g11 �
0.96 for different initially imprinted velocities. Both com-
ponents have equal linear density n � 4.0 3 108 cm21.
A sufficiently fast soliton will be transferred through the
domain wall into the other component. However, if the ve-
locity is sufficiently low, the soliton is reflected at the do-
main wall, as shown in Fig. 4. This figure shows the case
of a box trap with the initial soliton velocity �q � 0.15cs.
At each reflection the soliton is partially evaporated in the
form of phonons in the second component. The latter in-
duces an acceleration until the soliton eventually escapes
the domain. The critical escape velocity can be estimated
from simple energetic considerations, assuming that the
soliton must overcome a potential barrier induced by the
second component at the domain wall. This gives a critical
velocity �qt �

p
�g12 2 g11��4Sl0, where S is the transver-

sal area. In the considered example, the analytical value
�qt � 0.19cs is in excellent agreement with the numerical
one �qt � 0.16cs. When the soliton is transferred, a back
action of the soliton on the domain is observed. This intro-
duces density fluctuations and perturbations in the domain

FIG. 3. (Left) Density of component 1 for the kink-antikink
case with q�0� � 0 and �q�0� � 0.89cs. Darker regions are those
with less density. Component 2 is the mirror image of compo-
nent 1 around x � 0. The dashed line is the soliton trajectory in
a single-component condensate. (Right) Detail of the collision
region.
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FIG. 4. Interaction with a domain wall of a soliton initially
created in component 1 with �q � 0.15cs.

walls, which slightly modify the critical velocity. The lat-
ter can produce a retrapping of the soliton in the original
domain, as observed in Fig. 4.

In this Letter we have shown the rich behavior of soli-
tons in two-component BEC. The two components pro-
vide solutions such as bound solitons and the possibility
to create extremely slowly moving ones. We have analyti-
cally studied the dynamics of the system with a variational
approach, and determined the possible scenarios. We have
finally analyzed a two-component BEC which contains do-
mains, and showed that depending on the physical parame-
ters a dark soliton can be either transferred or reflected at
the domain wall.

Several interesting problems, however, remain open.
Among them, we stress especially two. In the present Let-
ter we have analyzed a 1D system. If the 1D conditions
are not strictly fulfilled, dynamical instability is expected
[9,10]. In the new scenario with two-component conden-
sates the properties of such instability should be altered. A
second interesting problem is given by the dissipation of
the oscillatory motion. The two solitons radiate phonons
when oscillating. Contrary to the case of other binary sys-
tems, the radiation will increase the elongation of the os-
cillations, until eventually breaking the soliton molecule,
and therefore these systems could be an excellent probe
for the dissipation effects.

We should finally stress that the effects considered here
appear for realistic situations and can be experimentally
analyzed with the state of the art technology. The creation
of dark solitons constitutes a well established technique for
the case of a single-component BEC. We have numeri-
cally simulated the PI mechanism in a two-component
BEC and demonstrated that this technique can also be ap-
plied in that situation [27]. Since the solitons are indeed
wider due to the presence of the second component, some
of the predicted effects, as, for example, the appearance
of a critical escape velocity, could be experimentally ob-
served in a nondestructive way. Others, however, as, for
example, the soliton oscillations, could require the opening
of the trap, and subsequent condensate expansion. The dy-
namics of such expansion will be the subject of a separate
investigation.
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