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Universality of Decoherence
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We consider environment induced decoherence of quantum superpositions to mixtures in the limit in
which that process is much faster than any competing one generated by the Hamiltonian Hsys of the iso-
lated system. While the golden rule then does not apply we can discard Hsys. By allowing for couplings
to different reservoirs, we reveal decoherence as a universal short-time phenomenon independent of the
character of the system as well as the bath and of the basis the superimposed states are taken from.
We discuss consequences for the classical behavior of the macroworld and quantum measurement: For
decoherence of superpositions of macroscopically distinct states Hsys is always negligible.
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Superpositions of quantum states give rise to interfer-
ence effects which are, however, more and more diffi-
cult to observe as the size of the system is increased and
the superimposed states are made more distinct. While
quantum interferences are ubiquitous in the microworld,
none have been seen for macroscopic bodies. A parame-
ter controlling the discernibility of interference fringes is
the ratio of the de Broglie wavelength l of a particle to a
typical linear dimension D of the spatial structure used to
construct superpositions of different partial waves. When
that parameter is of order unity, interference is easily mea-
surable; but upon decreasing l�D, either by letting D grow
or using ever more massive particles and thus ever smaller
l, wave effects become elusive and eventually escape cur-
rent detection techniques. As an example, we may think of
double-slit experiments (with D the slit distance) for which
the increasing difficulty in question concerns the resolution
of angular apertures of diffraction structures of order l�D.

It is nowadays widely accepted that an even more im-
portant reason for the notorious absence of quantum super-
positions from the macroscopic world lies in environment
imposed decoherence [1,2], and that phenomenon is our
concern here. Decoherence is, for microscopic bodies,
just a facet of dissipation caused by interactions with
many-freedom surroundings. Spontaneous emission of
light by an atom is such a dissipative process, with the
electromagnetic field acting as a weakly coupled environ-
ment. Inasmuch as radiatively coupled states of an atom
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are only “microscopically” distinct, it would appear overly
pedantic and even somewhat misleading to attach the
fashionable label decoherence to polarization decay while
reserving dissipation to the exponential decrease of the
population of the excited state. But “larger” systems under
the influence of environments do invite such different
names for the following reason. If two sufficiently distinct
states js�, js0� are brought to an initial superposition
j � � cjs� 1 c0js0�, the density operator r�t� starts out as
the projector r�0� � j � � j and then, for suitable coupling
to the environment (see below), decoheres to the mixture
jcj2js� �sj 1 jc0j2js0� �s0j, with the weights jcj2, jc0j2 still
as in the initial superposition, on a time scale tdec while
the subsequent relaxation of that mixture towards an even-
tually stationary r�`� has a much longer characteristic
time tdiss. The time scale ratio tdec�tdiss becomes the
smaller the more distinct the two component states are. If
that distinction can be measured by a length D ~ js 2 s0j
the time scale ratio is again determined by the ratio of the
de Broglie wavelength to D, typically as

tdec�tdiss � �l�D�2. (1)

The acceleration of decoherence against relaxation of prob-
abilities by the (squared) ratio D�l suggests that decoher-
ence entails classicality of the macroworld. Indeed, for
macroscopic bodies and macroscopic values of D the ac-
celeration factor is so huge that decoherence appears as
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instantaneous while dissipation for classically meaningful
quantities may not at all be noticeable.

The acceleration factor in question has been studied in
recent experiments [3–5]. Arndt et al. in Vienna [3] ob-
served multiple-slit diffraction of the largest objects thus
far, C60 molecules. No decohering influence of the en-
vironment was effective, simply because tdiss and the
relevant thermal de Broglie length were sufficiently large.
Experiments at the ENS in Paris [4] involved superposi-
tions of coherent states of a microwave cavity mode. Even
though the cavity was of high quality (tdiss � 160 ms) the
acceleration factor was controlled between, roughly, 1 and
10. Finally, a NIST group [5] worked with superpositions
of translational-motion states of single 9Be1 atoms in Paul
traps. Here the acceleration factor was steered through the
range 1 25. On the theoretical side the experiments men-
tioned are well understood. In all cases the decoherence
time is not smaller than the time scale of dissipation by
many orders of magnitude; it is, in fact, still larger than the
characteristic times of the free motion of the system in the
absence of any environment. In that limit, both dissipation
and its companion decoherence can be treated by Fermi’s
golden rule or fancied-up variants thereof like master equa-
tions. The golden rule involves a certain long-time limit:
It cannot yield time independent transition rates before the
time elapsed since the preparation of the initial state ex-
ceeds the basic periods tsys of the isolated system. Indeed,
inasmuch as it requires energy conservation for the ex-
change of free-bath and free-system quanta, it presupposes
such large times for resonance to become effective.

The golden rule cannot be trusted when it predicts a
decoherence time tdec smaller than tsys. It thus does not
explain why the macroworld behaves classically. When
holding decoherence responsible here we mostly rely on
an exactly solvable model, a harmonic oscillator harmoni-
cally coupled to a bath itself consisting of harmonic oscil-
lators [6]. The acceleration factor D�l is there found in
effect already for arbitrarily small times. Invaluable as the
oscillator model is for rigorously revealing decoherence, it
cannot prove that phenomenon to be a universal one.

The clue to progress lies in the fact that the Hamiltonian
H � Hsys 1 Hbath 1 Hint of the embedding of a system
in an environment (alias bath) can be simplified for times
much smaller than the characteristic times tsys of Hsys:
We can altogether neglect any motion the isolated system
would perform, i.e., discard Hsys. For the structure of the
interaction Hamiltonian we do not have much of a choice.
Introducing a coupling agent each for the system, S, and
the bath, B, we may write

Hint � SB . (2)

It follows that the coupling agent S becomes conserved
and plays only the role of a fixed parameter. Introducing
eigenvectors and eigenvalues of S as Sjs� � sjs� we con-
sider the matrix element �sjW js0� of the joint density opera-
tor of our compound which still is a density operator for
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the bath. We shall eventually be interested only in the re-
duced density matrix �sjrjs0� � Trbath�sjW js0� and intend
to rigorously reveal decoherence as a universal short-time
phenomenon by showing

�sjr�t�js0� � e2�s2s0�2f�t�1i�s22s02� w�t� �sjr�0�js0� , (3)

with functions f�t� $ 0 and w�t� to be determined.
For the next step we momentarily model the bath as a

collection of oscillators and specify
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To write the Liouville–von Neumann equation for the joint
density operator W it is convenient to stick to the S rep-
resentation and employ the Wigner function with respect
to the bath oscillators. Denoting by W�s, s0, p, q, t� that
hybrid representative we get the reduced density matrix by
integrating over the �2N�-dimensional phase space of the
bath, �sjr�t�js0� �
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The purely parametric role of the eigenvalues s, s0 of the
system coupling agent is manifest in the generator L. We
could proceed to solving the foregoing first-order differ-
ential equation for W�s, s0, p, q, t�. It is more convenient
to directly go for the time evolution of the reduced density
matrix. To that end we may assume initial statistical
independence of system and bath, W�s, s0, p, q, 0� �
�sjr�0�js0� 3 Wbath�p, q, 0�. Without loss of generality
we momentarily assume the initial bath distribution sharp,
Wbath�p, q, 0� �

Q
i d�pi 2 pi0�d�qi 2 qi0�, since we

may later average with whatever weight we please. A
reduced time evolution operator can be introduced as
U�t� �

R
dNp dNq eLtWbath�p, q, 0�. We readily check
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and then, using the commutator � ≠

≠qi
, qj� � dij, shift the

factor qi in the integrand to the right of the exponential
eLt , to get a reduced generator l�t� � �U�t�U�t�21 as
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Because of the parametric role of the eigenvalues s, s0 we
here do not confront a differential operator and get the den-
sity matrix as �sjr�t�js0� � exp	

Rt
0 dt0 l�t0�
 �sjr�0�js0�;

this contains the initial coordinates qi0 and momenta pi0
in the exponent. Now we invoke a thermal bath and
average as eiaqi � e2a2 h̄�4mvi tanh�b h̄vi�2� and eibpi �
e2b2mh̄vi�4 tanh�b h̄vi�2�. The result (3) is so reached with
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where ni � �eb h̄vi 2 1�21 is the thermal number of
quanta and C�t� � �B�t�B�0�� the thermal autocorrela-
tion function of the bath coupling agent. The function
f�t�, which determines the decoherence as thermally
enhanced by the factor 1 1 2ni , begins quadratically
in t; for larger times it approaches f�t� ! gt with
g � Reh̄22

R
`
0 dt C�t�, provided C�t� falls off faster than

t22. The proportionality of f�t� to h̄21 signals a quantum
scale l2 of reference for �s 2 s0�2. The phase w�t�
begins ~ t3 and is temperature independent. We should
appreciate the dramatic difference of the decoherence
function f�t� from its golden rule counterpart. If the
system were itself a harmonic oscillator with frequency
V, mass M, and displacement S the golden rule would
yield fGR�t� � gGRt with gGR � �1 1 2n�V�� 3

�2h̄�22Re
R`

0 dt eiVt��B�t�, B�0���. Most importantly,
our decoherence function in (3) describes accelerated
decoherence for whatever system with whatever coupling
agent S, provided only decoherence is fast in the sense
tdec ø tsys which will always be the case for sufficiently
distinct s and s0. In that latter case, �sjr�t�js0� will
decay to negligible magnitude before deviations from the
Gaussian falloff due to f�t� ~ t2 occur.

We have not gone more than halfway towards our goal
yet. The decoherence shown by the foregoing reasoning
is a privilege of superpositions of eigenstates of the sys-
tem coupling agent; superpositions of eigenstates of other
system observables not commuting with S need not lose
their relative quantum phases any faster than probabilities
change. But, on the other hand, no privileged representa-
tions are known in the macroworld.

For fast decoherence of macroscopic superpositions to
take place without distinction of special states, a variety of
environmental influences would have to be at work. Rather
than privileging a single observable S as the one and only
coupling agent to contact but a single bath it seems neces-
sary to account for several noncommuting observables as
coupling agents toward several reservoirs.
To model the situation just sketched we accompany the
single agent S by a canonically conjugate partner R with
�R, S� � h̄�i. More general models would involve a larger
set of noncommuting system observables but would not
lead to conclusions qualitatively different from the ones to
be discussed here. Still interested in times smaller than
tsys, we need not worry about a system Hamiltonian Hsys
and generalize the Hamiltonian (4) to

Hbath � H1 1 H2, Hint � SB1 1 RB2 , (8)

where the indices 1,2 label independent baths. Were we
to assume both baths as composed of harmonic oscillators,
the neglect of Hsys would still guarantee explicit tractability
with the strategy as above. However, the resulting expres-
sions are so unwieldy to not warrant full display. More-
over, we want to ascertain universality of decoherence by
showing that the following generalization of (3) holds for
short times, i.e., up to O �t3� corrections:

�sjr�t�js0� � e2�s2s0�2f1�t�eh̄2�≠�≠s1≠�≠s0�2f2�t� �sjr�0�js0� ,

fi�t� � �B2
i �t2�2h̄2 1 O �t3� , (9)

for all baths providing zero means and Gaussian statis-
tics to the coupling agents Bi in their initial states. Such
behavior is typical for coupling agents to many-freedom
baths which are sums of very many effectively independent
contributions; the central limit theorem predicts Gaussian
statistics for such sums. The harmonic-oscillator bath in
thermal equilibrium has the virtue of imparting Gaussian
behavior even to each summand giq̂i in the coupling agent
B given in (4). The coupling agents of more general baths
can achieve Gaussian behavior only by obeying the central
limit theorem.

To make peace with the absence of a phase factor from
(9) it is good to recall from (7) that w�t� ~ t3 for small
times. We see that the coupling SB1 causes decoherence
as in (3). On the other hand, RB2 generates diffusive
behavior for the “center of mass” variable s 1 s0, and that
diffusion is not in any way accelerated: Note that Planck’s
constant cancels in the second exponential and that no
factor involving s 2 s0 appears there either. However,
upon Fourier transforming to the R representation we see
that the second exponential in (9) entails accelerated decay
for coherences �rjr�t�jr 0� with respect to eigenstates jr�
of R, just as the first factor does for the eigenstates of S.
It is good to realize that both S and R have continuous
spectra. It follows that r�t� cannot be diagonal in either
the S or the R representation. Our point is not about
strict diagonalization but about the rapid disappearance of
both �rjr�t�jr 0� and �sjr�t�js0� when jr 2 r 0 j and js 2

s0 j are macroscopic, respectively. In particular, we might
initially have r�0� � j � � j with the state j � a superposition
of two wave packets whose widths are small compared
to their macroscopic separation, with respect to either S
or R or both. Our assertion (9) implies rapid relative
2915
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decoherence of the two wave packets while leaving each
of them practically unchanged.

The proof of our assertion (9) is surprisingly simple.
In �sjr�t�js0� � Trbath�sje2iHt� h̄W�0�eiHt� h̄js0� we factor
the evolution operator e2iHt� h̄ into four, each of which
involves one of the four pieces of the Hamiltonian (8);
that factorization holds up to O �t2� corrections. Because
of the cyclic invariance of the trace the evolution opera-
tors of the baths coalesce as e2iHit� h̄eiHit� h̄ � 1, and this
is how independence of the bath model arises. Now, the
coupling agent S can be replaced with its eigenvalues
as Trbathe2i�s2s0�B1t� h̄�sje2iRB2t� h̄W�0�eiRB2t� h̄js0�. By in-
voking Rjs� � ih̄

≠

≠s js� and assuming the two baths and
the system independent initially we get

�sjr�t�js0� � �e2i�s2s0�B1t� h̄� �e2�≠�≠s1≠�≠s0�B2t� �sjr�0�js0� .

The central limit theorem then yields the decoherence law
(9) as discussed above, provided the O �t2� correction aris-
ing from the factorization of e2iHt� h̄ turns into the asserted
O �t3� correction through the average over the initial state.
To check on that latter detail [7] we may look at the first
factor in the matrix element displayed above which reads,
with the O �t2� correction from the factorization accounted
for, �e2i�s2s0� �B1t1 �B1t2�2�� h̄� with �B1 �

i
h̄ �H1, B1�. But if

B1 has the structure required for the law of large numbers
to apply, so will �B1, and then indeed ��B1t 1 �B1t2�2�2� �
�B2

1�t2 1 O �t3�.
As expected, by introducing different reservoirs cou-

pling to noncommuting observables we break the privilege
of a single representation. Noncommuting agents con-
tacting different reservoirs occur, e.g., for a body probing
an electric field through its charge or electric dipole mo-
ment and a magnetic field with its magnetic moment. That
simple example indicates that for a macroscopic body the
exclusive action of a single reservoir may be as unrealistic
a fiction as complete isolation.

Our discussion is of relevance for the quantum measure-
ment problem. It had long been considered a puzzle how a
microscopic object prepared in a superposition of, say, two
eigenstates of an observable to be measured can, through
unitary evolution of its composition with a macroscopic
pointer, cause that pointer to reach one of two distinct
positions in each run of the measurement, with those
positions uniquely related to the two eigenvalues and re-
peated runs building up probabilities equal to the weights
in the original superposition. Enigmatic was not the
entanglement of micro-object and pointer into a superpo-
sition associating each eigenstate of the measured micro-
observable with a unique pointer state (a superposition of
the type often called a Schrödinger cat state); such en-
tanglement is accessible through unitary evolution, as was
already explained by von Neumann [8]. The puzzle rather
was the “collapse” of that superposition to the mixture
with unchanged probabilities. The current understanding
is [1,2] that the environment decoheres the superposition.
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Zurek has pointed out that decoherence of different pointer
displacements is most easily understood if the pointer
displacement is taken as the pointer’s coupling agent
towards a reservoir. The price to be paid is the distinction
of a “pointer basis,” for times up to tsys. We now see
that no such price is due when the pointer displacement is
not the only coupling agent but just one of several, each
towards a different reservoir. We should emphasize that
we here discuss decoherence for a macroscopic pointer
rather than a microscopic object subject to measurement;
such a pointer does behave effectively classically with
respect to both displacement and momentum.

Can decoherence be reversed? Like any other dissipa-
tive phenomenon in (subdynamics of) unitary evolutions,
decoherence is not strictly irreversible. Seemingly spon-
taneous revivals of coherences out of an apparent mixture
or time reversed decoherence could arise for a macroscopic
system, in the unitary motion of its composition with an en-
vironment, given suitable initial states. As regards ordinary
damping, such reversals were demonstrated in the historic
spin echo experiments [9]; but decoherence is just ordinary
damping, starting from an extraordinary initial state.

While decoherence makes quantum superpositions alien
to the macroworld, it does not forbid quantum behavior to
ever reach out there. For instance, once the initial state
of the object-pointer compound of a measurement has de-
cohered, the pointer has vanishing probability to jump be-
tween the various positions it could have gone to by the
previous interaction with the micro-object. The pointer
will rather move classically, up to tiny fluctuations. What is
left from the entangled state of micro-object and pointer are
finite probabilities for distinct pointer readings, and these
are due to the very nonclassical nature of the initial state.

We owe a final remark to present efforts towards real-
izing quantum computing. A quantum computer would
incorporate lots of quantum rather than classical two-state
elements and would therefore be a mesoscopic or macro-
scopic complex. The whole complex would seem prone to
accelerated decoherence. No computation relying on co-
herences seems possible during time spans exceeding tdec.
Hope must therefore be set on error correction codes or
elements sufficiently protected against detrimental envi-
ronments. Symmetry may be of help [10,11].
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