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Small World Effect in an Epidemiological Model
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A model for the spread of an infection is analyzed for different population structures. The interactions
within the population are described by small world networks, ranging from ordered lattices to random
graphs. For the more ordered systems, there is a fluctuating endemic state of low infection. At a finite
value of the disorder of the network, we find a transition to self-sustained oscillations in the size of the
infected subpopulation.
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I. Introduction.—How does the dynamics of an infec-
tious disease depend on the structure of a population? A
great amount of work has been done on the phenomeno-
logical description of particular epidemic situations [1–4].
A classical mathematical approach to these problems deals
with well mixed populations, where the subpopulations
involved (typically susceptible, infected, and removed) in-
teract in proportion to their sizes. With these zero dimen-
sional models it has been possible to study, among other
epidemic features, the existence of threshold values for
the spread of an infection [5], the asymptotic solution for
the density of infected people [6–8], and the effect of
stochastic fluctuations on the modulation of an epidemic
situation [9]. A second classical approach describes spa-
tially extended subpopulations, such as elements in a
lattice. In this, the geographic spread of an epidemic
can be analyzed as a reaction-diffusion process [10–13],
bearing close similarity to paradigmatic reactions such as
Belousov-Zhabotinskii’s.

Real populations rarely fall into either of these cate-
gories, being neither well mixed nor lattices. Recently
introduced by Watts and Strogatz [14], small world net-
works attempt to translate, into an abstract model, the com-
plex topology of social interactions. Small worlds may
play an important role in the study of the influence of
the network structure upon the dynamics of many social
processes, such as disease spreading, formation of pub-
lic opinion, distribution of wealth, transmission of cultural
traits, etc. [15]. In relation to epidemiological models, it
has been shown that small world networks present a much
faster epidemic propagation than reaction-diffusion mod-
els or discrete models based on regular lattices of a social
network [16].

In the original model of small worlds a single parameter
p, running from 0 to 1, characterizes the degree of disorder
of the network, respectively, ranging from a regular lattice
to a completely random graph. It has been shown that geo-
metrical properties, as well as certain statistical mechanics
properties, show a transition at pc � 0 in the limit of large
systems, N ! ` [17]. That is, any finite value of the dis-
order induces the small world behavior. In this Letter we
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show that a sharp transition in the behavior of an infection
dynamics exists at a finite value of p.

II. Epidemic model.—We analyze a simple model of the
spread of an infectious disease. We want, mainly, to point
to the role played by the network structure on the temporal
dynamics of the epidemic. The disease has three stages:
susceptible (S), infected (I), and refractory (R). An ele-
ment of the population is described by a single dynamical
variable adopting one of these three values. Susceptible
elements can pass to the infected state through contagion
by an infected one. Infected elements pass to the refrac-
tory state after an infection time tI . Refractory elements
return to the susceptible state after a recovery time tR . This
kind of system is usually called SIRS, for the cycle that a
single element goes over. The contagion is possible only
during the S phase, and only by an I element. During the
R phase, the elements are immune and do not infect. SIRS
models are excitable systems, known to display relaxation
oscillations in mean field or well-mixed approaches. In
spatially extended versions space-time oscillations can oc-
cur, due to the interaction between neighboring elements.
Both kinds of behavior are analogous to reaction-diffusion
systems such as the Belousov-Zhabotinskii reaction [6,10].
An SIR system on a one-dimensional lattice with local and
global interactions has already been studied before [18].
In this work, a socially sensible network was used to study
the spread of an infection, well before the introduction of
small-world networks.

The interactions between the elements of the popula-
tion are described by a small world network. The links
represent the contact between subjects, and infection can
proceed only through them. As in the Watts and Strogatz
model, the small worlds we study are random networks
built upon a topological ring with N vertices and coordina-
tion number 2K . Each link connecting a vertex to a neigh-
bor in the clockwise sense is then rewired at random, with
probability p, to any vertex of the system. With probabil-
ity �1 2 p� the original link is preserved. Self-connections
and multiple connections are prohibited. With this pro-
cedure, we have a regular lattice at p � 0, and progres-
sively random graphs for p . 0. The long range links that
© 2001 The American Physical Society 2909



VOLUME 86, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 26 MARCH 2001
appear at any p . 0 trigger the small world phenomenon.
At p � 1 all the links have been rewired, and the result is
similar to (though not exactly) a completely random net-
work. This algorithm should be used with caution, since
it can produce disconnected graphs. We have used only
connected ones for our analysis.

Time proceeds by discrete steps. Each element is
characterized by a time counter ti�t� � 0, 1, . . . , tI 1

tR � t0, describing its phase in the cycle of the disease.
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The epidemiological state pi of the element (S, I , or R)
depends on this phase in the following way:

pi�t� � S if ti�t� � 0 ,

pi�t� � I if ti�t� [ �1, tI � ,

pi�t� � R if ti�t� [ �tI 1 1, t0� .

(1)

The state of an element in the next step depends on its
current phase in the cycle, and the state of its neighbors in
the network. The rules of evolution are the following:
ti�t 1 1� � 0 if ti�t� � 0 and no infection occurs,

ti�t 1 1� � 1 if ti�t� � 0 and i becomes infected,

ti�t 1 1� � ti�t� 1 1 if 1 # ti�t� , t0 ,

ti�t 1 1� � 0 if ti�t� � t0 .

(2)
That is, a susceptible element stays as such, at t � 0, until
it becomes infected. Once infected, it goes (deterministi-
cally) over a cycle that lasts t0 time steps. During the first
tI time steps, it is infected and can potentially transmit the
disease to a susceptible neighbor. During the last tR time
steps of the cycle, it remains in state R, immune but not
contagious. After the cycle is complete, it returns to the
susceptible state.

The contagion of a susceptible element by an infected
one, and the subsequent excitation of the disease cycle in
the new infected, occur stochastically at a local level. Say
that the element i is susceptible, and that it has ki neigh-
bors, of which kinf are infected. Then, i will become in-
fected with probability kinf�ki . Observe that i will become
infected with probability 1 if all its neighbors are infected.
Besides this parameter-free mechanism, there may be other
reasonable choices. For example, if the susceptible had
a probability q of contagion with each infected neighbor,
we would have a probability of infection �1 2 �1 2 q�kinf �.
We have tested that both these criteria give qualitatively the
same results for values of q & 0.2. For other values of q,
the behaviors are outlined at the end of Section III.

III. Numerical results.—We have performed extensive
numerical simulations of the described model. Networks
with N � 103 to 106 vertices have been explored, with
K � 3 to 10. A typical realization starts with the genera-
tion of the random network and the initialization of the
state of the elements. An initial fraction of 0.1 infected,
and the rest susceptible, was used in all the results shown
here. Other initial conditions have been explored as well,
and no changes have been observed in the behavior. After
a transient a stationary state is achieved, and the computa-
tions are followed for several thousand time steps to per-
form statistical averages.

We show in Fig. 1 part of three time series displaying
the fraction of infected elements in the system, ninf�t�. The
three curves correspond to systems with different values
of the disorder parameter: p � 0.01 (top), 0.2 (middle),
and 0.9 (bottom). The three systems have N � 104 and
K � 3, and infection cycles with tI � 4 and tR � 9. The
initial state is random with ninf�0� � 0.1. The 400 time
steps shown are representative of the stationary state. We
can see clearly a transition from an endemic situation to an
oscillatory one. At p � 0.01 (top), where the network is
nearly a regular lattice, the stationary state is a fixed point,
with fluctuations. The situation corresponds to that of an
endemic infection, with a low and persistent fraction of in-
fected individuals. At high values of p — like the case with
p � 0.9 shown in the figure (bottom)— large amplitude,
self-sustained oscillations develop. The situation is almost
periodic, with a very well defined period and small fluc-
tuations in amplitude. The period is slightly longer than
t0, since it includes the average time that a susceptible in-
dividual remains at state S, before being infected. Epide-
miologically, the situation resembles the periodic epidemic
patterns typical of large populations [3]. A mean field
model of the system, expected to resemble the behavior at
p � 1, can easily be shown to exhibit these oscillations.
The transition between both behaviors is apparent — in
this relatively small system— at the intermediate value of
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FIG. 1. Fraction of infected elements as a function of time.
Three time series are shown, corresponding to different values
of the disorder parameter p, as shown in the legends. Other pa-
rameters are N � 104, K � 3, tI � 4, tR � 9, Ninf�0� � 0.1.
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disorder p � 0.2, shown in the middle curve. Here a low-
amplitude periodic pattern can be seen, appearing and dis-
appearing again in a background of strong fluctuations.
Moreover, the mean value of infection is seen to grow
with p.

The formation of persistent oscillations corresponds to
a spontaneous synchronization of a significant fraction of
the elements in the system. Their phases ti�t� in the epi-
demic cycle become synchronized, and they go over the
disease process together, becoming ill at the same time,
and recovering at the same time. We can characterize this
behavior with a synchronization parameter [19], defined as

s�t� �

É
1
N

NX
j�1

eifj �t�

É
, (3)

where fj � 2p�tj 2 1��t0 is a geometrical phase corre-
sponding to tj . We have chosen to let the states t � 0 out
of the sum in (3), and take into account only the determin-
istic part of the cycles.

When the system is not synchronized, the phases are
widely spread in the cycle and the complex numbers eif

are correspondingly spread in the unit circle. In this situa-
tion s is small. On the other hand, when a significant part
of the elements are synchronized in the cycle, s is large.
The synchronization would be strictly s � 1 if all the ele-
ments were at the same state at the same time. However,
such a state would end up in Ninf � 0 after t0 time steps,
and the epidemic would end since the system is closed and
no spontaneous infection of susceptibles is being taken into
account in the model.

In Fig. 2 we show the synchronization parameter s,
obtained as a time average of s�t� over 2000 time steps
and a subsequent average over realizations of the system.
Several curves are shown, corresponding to system sizes
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FIG. 2. Synchronization of the system as a function of the
disorder parameter p. Three curves are shown, corresponding
to different system sizes N � 103, N � 104, N � 105 and 106,
as shown in the legend. Each point corresponds to a time average
of 2000 time steps, and a subsequent average over a number of
realizations of the networks and the initial condition, as shown
in the legend. Other parameters are K � 3, tI � 4, tR � 9,
Ninf�0� � 0.1.
N � 103, 104, 105, and 106. A transition in the synchro-
nization can be seen as p runs from 0 to 1. The transition
becomes sharper for large systems, at a value of the disor-
der parameter pc � 0.4. It is worthwhile to note that the
transition to synchronization occurs as a function of the
structure of the network, contrasting the phenomenon of
synchronization as a function of the strength of the inter-
action, as in other systems of coupled oscillators [20]. This
behavior is observed for a wide range of values of tI and
tR . The amplest oscillations take place around tI�tR � 1.
They disappear when tI is significantly greater or smaller
than tR .

All the systems shown in Figs. 1 and 2 have K � 3.
We have explored higher values of K as well. The picture
is qualitatively the same, with a sharp transition from a
quasifixed point to a quasilimit cycle at a finite value of
p. The critical value pc shifts toward lower values for
growing K . This is reasonable, since higher values of K
approach the system to a globally coupled one (at K � N
all the elements interact with every other one, even at
p � 0). So, the mean field behavior (the oscillations) can
be expected to occur at lower values of p. In Fig. 3 this
effect can be seen for a system with N � 104 and growing
values of K � 3, 5, and 10.

The alternative mechanism of contagion, introduced at
the end of Section II, produces essentially the same be-
haviors at an intermediate range of values of q, around
q � 0.2. For lower values of q, the regular oscillations
are not observed. Instead, the irregular oscillatory behavior
(like that in Fig. 1, center) extends up to p � 1. As q ap-
proaches 0, the infection is less virulent and, eventually, no
self-sustained patterns are possible. For values of q * 0.3,
the infection is virulent enough to display the self-sustained
oscillations even at low values of p —we observed irregu-
lar oscillations down to p � 0.01. Regular oscillations ap-
pear at p � 0.2. Their amplitude is great enough— at
p * 0.5— to produce the simultaneous infection of al-
most the whole population, followed by its immunity and
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FIG. 3. Synchronization of the system as a function of the
disorder parameter p. Three systems with different values of the
coordination number K are shown. All of them have N � 104,
tI � 4, tR � 9, Ninf�0� � 0.1.
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subsequent extinction of the disease. Additionally, in this
case, for all values of p, there is an increase of the mean
value of the infected fraction of the population.

IV. Discussion.—Why does this transition to synchro-
nization take place? Unfortunately, we do not have ana-
lytical arguments to describe this yet. As mentioned
before, a mean field model can be shown to predict the
oscillations, but this can be expected to describe only the
network at p � 1, and it does not shed light on the nature
of the transition at lower values of disorder. We can
advance only some conjectures, based on our observation
of the dynamical behavior of the system in real time on
the computer screen.

An explanation involving L�p�, the typical distance be-
tween pairs of elements (defined as the size of the mini-
mum path connecting two elements) is not plausible, since
L is known to behave critically with pc � 0, and we ob-
serve the transition at p . 0. Complementarily to L, small
world networks can be described by the degree of clus-
terization C�p� [21]. At low values of p, the networks are
rather regular and highly clustered. As p approaches 1,
C decreases. The crossover from high to low clusteriza-
tion occurs at a higher value of p, compared to that ob-
served in the decay of L. For systems with K � 3, such
as those mainly studied here, we have that this crossover is
mostly concentrated between p � 0.1 and p � 0.5, pre-
cisely where the onset of oscillations occurs. Moreover,
the change in the average clusterization C�p� is accom-
panied by a corresponding one in the distribution of the
clusterization at the element level, ci�p�. Highly ordered
networks, at low p, show not only a large value of the aver-
age clusterization C�p� but also a small dispersion around
it. On the other extreme, highly disordered networks, with
p . 0.5, exhibit a low average clusterization and also a
low dispersion around it. There is an intermediate range
of p, between 0.1 and 0.5, where the average clusteriza-
tion shifts from high to low, but the distributions are wide.
This indicates that, in this range, the system is a mixture of
highly ordered, highly clustered regions and random, lowly
clustered ones. If we consider that the clustering structure
determines a partition of the whole system into smaller,
interacting, subsystems, the global behavior of the system
could be interpreted as a superposition of the subsystems’
dynamics. When p is small, the existence of large clusters
(essentially one-dimensional in our model) inhibits the os-
cillatory behavior because, once the infection breaks into
such a region, it remains restricted to it a long time until
all the individuals have completed the cycle, orderly and
deterministically. As p increases, the number of big, or-
dered regions decreases. Elements within small regions
with some long range links go through the infection cycle
and become infected again before long. Some degree of
synchronization can be seen here (Fig. 1, center, corre-
sponds to p � 0.2). When a critical value of p is reached,
and the system is essentially composed of enough small
regions of low clusterization and a similar local dynam-
2912
ics, the synchronized, periodic global behavior establishes
spontaneously.

In summary, we have observed a transition at a finite
value of the disorder in a small world model. The dynami-
cal behavior of an SIRS epidemiological model changes
from an irregular, low-amplitude evolution at small p to a
spontaneous state of wide amplitude oscillations at large p.
This may be related to observed patterns in real epidemics
[3], where an effect of the social structure is observed in
the dynamics of the disease.
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