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Intermittent Distribution of Inertial Particles in Turbulent Flows
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We consider inertial particles suspended in an incompressible turbulent flow. Because of particles’
inertia their flow is compressible, which leads to fluctuations of concentration significant for heavy
particles. We show that the statistics of these fluctuations is independent of details of the velocity statis-
tics, which allows us to predict that the particles cluster on the viscous scale of turbulence and describe
the probability distribution of concentration fluctuations. We discuss the possible role of the clustering
in the physics of atmospheric aerosols, in particular, in cloud formation.
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When observing air bubbles in water or dust in air, one
often notices that inertial particles are not distributed ho-
mogeneously in a flow. This is used for flow visualization.
If the flow is turbulent, the concentration of the suspended
particles fluctuates. Here we develop a statistical theory
of this phenomenon based on a Lagrangian description of
turbulence (see [1–3] and references therein). We describe
the initial growth of concentration fluctuations from a uni-
form state and its saturation due to finite-size effects, im-
posed either by the Brownian motion or by a finite distance
between the particles.

To illustrate the fact that the flow of inertial particles
is compressible, consider a spherical particle so small that
the flow around it is viscous. The particle’s velocity y
is related to the fluid velocity u by the equation dy�dt 2

bdu�dt � �u 2 y��ts. We defined b � 3r��r 1 2r0�
and the Stokes time ts � a2��3nb�, where a is the ra-
dius of the particle, r and r0 are densities of the ambient
fluid and the particle, respectively [4,5]. Both y and u are
evaluated along the particle’s trajectory q�t, r� that satis-
fies ≠tq � y and q�0, r� � r. Since a ø ry , where ry

is the viscous scale of the flow, then one can solve the
system for y and q perturbatively in a small parameter
�b 2 1�ts�ty � �b 2 1�a2�br2

y :

y � u 1 �b 2 1�ts�≠tu 1 �u ? =�u� . (1)

The velocity field y�t, r� of spatially distributed particles
is compressible even if the fluid flow is incompressible
[5]: �= ? y� � �b 2 1�ts=��u ? =�u�. The effect of the
(small) compressible component of the y flow can be
enhanced by large parameters (Reynolds and Schmidt
numbers).

Particle concentration satisfies the diffusion-advection
equation with the diffusivity k due to Brownian motion:

≠tn 1 =�yn� 2 k=2n � 0 . (2)

Every particle produces a perturbation of the flow that
decays as an inverse distance from the particle. Since
0031-9007�01�86(13)�2790(4)$15.00
particles move coherently within the viscous scale ry , the
condition a

Rry

a n�r�r21d3r � nar2
y ø 1 has to be satis-

fied to neglect their interaction. This condition is more
restrictive than na3 ø 1. If nar2

y ø 1, the concentration
field can be considered passive; i.e., y is independent of n
in Eq. (2). We consider velocity y as an arbitrary random
field with a statistics stationary in time and homogeneous
in space. We presume only that velocity has finite tempo-
ral correlations and is spatially smooth below the viscous
scale ry . Velocity gradients produce inhomogeneities in
the concentration while diffusion tends to smooth it out.
Comparing the second and the third terms in Eq. (2) one
concludes that velocity gradient l dominates the motion
at the scales larger than the diffusion scale,

p
k�l. Dif-

fusion makes the field n smooth at scales smaller thanp
k�l. The account of diffusion is equivalent to the con-

sideration of concentration coarse-grained over the diffu-
sion scale [6]. Note that the diffusivity of macroscopic
particles is usually much smaller than the viscosity of the
ambient fluid (the Schmidt number n�k is large) so the
diffusion scale is much smaller than the viscous scale:p

k�l ø ry �
p

n�l. Since
p

k�l can be even smaller
than the distance between particles, we define the scale of
coarse-graining rd as the largest between

p
k�l and n21�3.

We neglect the fluctuations of diffusion scale because they
do not change the dependence of the concentration on large
parameters, which are either time in the transient regime
or Reynolds and Schmidt numbers in the steady state.

Evolution of an arbitrary initial condition n�0, r�
according to Eq. (2) ultimately results in a unique steady
state of the concentration fluctuations [6]. Without any
loss of generality, we consider a homogeneous in space
initial concentration choosing the units so that n0 � 1. Let
us describe the initial stage of the fluctuation growth. The
term n0�= ? y� in Eq. (2) can be viewed as a source pro-
ducing fluctuations on the scale ry . At t & l21 ln�ry�rd�
those fluctuations have not yet compressed down to rd so
that diffusion (and the coarse-graining) is irrelevant. We
call this stage the ideal case. In the Lagrangian frame,
Eq. (2) then becomes the ordinary differential equation
© 2001 The American Physical Society
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dn�dt � 2n�= ? y�. Here �= ? y� is a function of time,
which fluctuates in a random flow. If the Lagrangian
correlation time of the fluid velocity, u, is finite,
which is true for most flows of interest, then �= ? y� ~

=��u ? =�u� has also a finite correlation time, t. At
t ¿ t, the concentration logarithm, X�t� � ln�n�t��
n�0�� � 2

Rt
0�= ? y� dt0, is a sum of a large number

of random variables. The theory of large deviations
[7] assures that the probability density function (PDF)
has the form P �X� ~ exp�2ts�X�t��, where s is a non-
negative convex function. To calculate the moments of the
concentration in the Eulerian frame one has to take every
Lagrangian element with its own weight proportional to
its volume, i.e., to the inverse concentration:

�na�t, r�	 ~
Z

dX exp��a 2 1�X 2 ts�X�t�� . (3)

At large times, this integral can be found using the saddle-
point approximation. The saddle-point Xa is given by
s0�Xa�t� � a 2 1, which implies Xa ~ t. Hence the mo-
ments generally behave exponentially in time: �na�t�	 ~

exp�g�a�t�.
Let us show that the conclusion on exponential behav-

ior of moments is enough to establish the most interest-
ing properties of this stage of evolution. The number of
particles is conserved; i.e., �n	 is time independent. Hence
g�1� � 0. It is also obvious that g�0� � 0. Because of
the Hölder inequality, the function g�a� is convex. There-
fore, it follows that g�a� is negative for 0 , a , 1 and
positive otherwise. Low-order moments decay, whereas
high-order and negative moments grow. The decay rate
is �logjnj	�t � dg�a��daja�0 , 0; i.e., n decays almost
everywhere. Since the mean concentration is conserved, n
has to grow in some (smaller and smaller) regions, which
implies growth of high moments. The growth of passive
scalar fluctuations in the case of a short-correlated in time
compressible flow has been described in [8].

Let us now give a more formal analysis which includes
the account of coarse-graining and describes the saturation
of the growth. Since the concentration fluctuations are
produced on the scale ry and are enhanced by com-
pressing down to rd we need few basic facts about the
Lagrangian statistics below the viscous scale of turbulence
[3,6,9–13]. As long as the distance between two trajecto-
ries, R � q1 2 q2, is much smaller than ry , it satisfies
the equation ≠tR � y�t, q1� 2 y�t, q2� 
 sR with the
rate-of-strain matrix sab�t� � =bya . The solution,
R�t� � W�t�R0, is expressed via the matrix W , statistics
of which can be described universally at times much
larger than the correlation time of s. It is convenient to
represent the Lagrangian transformation as stretching or
contraction along fixed orthogonal directions followed by
a rotation: W � MLN , where M and N are orthogonal,
while L is diagonal. For our purpose, we need only the
PDF of the eigenvalues exp�ri� of the matrix L which is
given by the large deviation theory [13]
P �t, ri� � Z21�t�u�r1 2 r2�, . . . , u�rd21 2 rd�
3 exp�2tS�r1�t 2 l1, . . . , rd�t 2 ld�� .

(4)

Thus, at t ¿ t, the statistics of stretching/contraction is
characterized by a single function S of d variables. This
entropy function is convex and non-negative. We assume S
to be nonzero at least in some interval, which means that
the flow is random. At large times, P �t, ri� has a sharp
maximum at ri � li t. The constants li are called the
Lyapunov exponents.

When one considers the advected fields, the Lagrangian
trajectories fixed by their final rather than initial positions
appear in the solution. Indeed, consider the Green’s func-
tion G�t, r j t0 � 0, r0� of (2). At k � 0 it is supported on
the Lagrangian trajectory q�0 j t, r� fixed by its final po-
sition r. Finite diffusivity leads to a finite value of the
Green’s function in a region around the nondiffusive tra-
jectory. As long as it is smaller than ry one can expand
the velocity in the equation on G in Taylor’s series near
q�t0 j t, r�. Since the zeroth order term corresponds to the
mere sweeping of the density one must keep the first order
term y���t0, q�t0 j t, r� 1 x��� 2 y���t0, q�t0 j t, r���� � s̃x. The
velocity gradient is now taken at the trajectory fixed by the
final point, and its statistical properties are generally dif-
ferent from the ones of s. The resulting equation is easily
resolved in Fourier space

G�t, r j 0, r0� �
Z

dk
exp�ik ? �r0 2 q�0 j t, r�� 2 ktIk�

�2p�d detW̃�t, r�
.

(5)

Here the matrix W̃ determines the evolution of patches
coming to the final point r. It satisfies ≠tW̃�t jT , r� �
s̃W̃�t jT , r� with W̃�0 jT , r� � 1. One can show that the
matrix I � k

Rt
0 dt0 W̃21�t0 j t, r�W̃21,t�t0 j t, r� is the iner-

tia tensor of a patch of particles, evaluated at t � 0, pro-
vided the patch is a sphere with the center at the point
r at time t. The particles perform Lagrangian motion in
the common velocity field and independent Brownian mo-
tions (cf. [13]). The expression for G is purely dynamical
since no averaging has been done in Eq. (5). We observe
that the size of the region that makes the main contribu-
tion to the concentration grows as the largest eigenvalue
of the matrix I; i.e., the square of the linear size grows
as k

Rt
0 dt0 exp�22r̃d�t0��. Since the Taylor expansion of

velocity is valid as long as the range of Green’s function
around q�0 j t, r� is smaller than ry , the applicability con-
dition of Eq. (5) is

k
Z t

0
dt0 exp�22r̃d�t0�� ø r2

y . (6)

To express the advected field in the Lagrangian terms
one ought to relate W̃ to W . Introducing the spatial
argument into W as Wij�t j t0, r� � ≠qi�t j t0, r��≠rj one
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has W̃�T jT , r� � W���T j 0, q�0 jT , r����. Indeed, what
started at q�0 jT , r� comes finally to r. Let us stress the
difference in Eulerian and Lagrangian averages in the
compressible case. All points equally contribute to an
Eulerian average which is just the space integral (assum-
ing ergodicity). In a Lagrangian average each trajectory
comes with its own weight determined by the local rate of
volume change. The volume average of a function f�W̃�
is

R
dr f���W̃�t0, r���� �

R
dx f���W �t0 j 0, x���� detW�t0 j 0, x�.

Since detW � exp�
P

ri�, then the PDF of the eigenvalues
expr̃i of W̃ is given by (4) with ri ! r̃i and multiplied
by exp�

P
r̃i�. It is normalized due to �detW� � 1 and has

a maximum at r̃i � l̃i t with l̃i generally different from
li [6].

One can now return to (5) and find the time of ap-
plicability of the ideal-case description for different mo-
ments. Formula (5) gives n�t, r� �

R
G�t, r j 0, r0� dr0 �

1� detW̃�t, r� � exp�2
P

r̃i�, the same expression as for
nondiffusing particles. The condition (6) thus defines the
applicability condition for the ideal-case regime. Let us
now specify which r̃i correspond to the realizations de-
termining a given moment �na	. The configurations that
satisfy (6) contribute

�na	id �
Z

dr̃i exp

∑
2�a 2 1�

X
r̃i 2 tS

∏
. (7)

This expression gives (3) after changing the integration
variables

P
r̃i � 2X. The saddle point that deter-

mines (7) corresponds to r̃d � 2cat, where ca is an
a-dependent constant. When k

Rt
0 dt0 exp�2cat0� ø r2

y

the saddle-point satisfies the constraint (6). Whether the
ideal description eventually breaks down depends on the
sign of ca . Note that the moments with a . 1 grow in
an ideal case which requires

P
r̃i , 0 according to (7).

Since dr̃d #
P

r̃i , 0, then ca . 0 at least for a . 1.
The physical meaning is transparent: the growth of these
moments requires compression which eventually brings
diffusion into play. The ideal approximation breaks down
after t�

a � c21
a ln�ry�rd�. This expression is exact in the

limit of large Schmidt numbers. Note that t� depends on
the order of the moment. For an entropy quadratic in r̃,
ca is a linear function of a. Since �na	 . �na	id then
the steady-state moments can be estimated from below
by �ry�rd�g�a��ca . Note that ga � aca at large a which
tells that the concentration PDF is less intermittent in a
steady state than during the initial stage of growth.

The sign of ca depends on a and the details of the en-
tropy. Nevertheless, one can make universal statements
about �na	id at large times, when (6) is effectively re-
duced to r̃d . 0. The integral (7) is exponential �na	id �
exp�g̃�a�t� with convex g̃�a�. Considering the argument
of the exponent in (7) one finds that g̃�a� is negative for
a . 0 and positive for large enough negative a, so it has
one zero at ab . The boundary ab , 0 for l̃d , 0 and be-
comes equal to zero at high compressibility when l̃d . 0
2792
and the normalization of the PDF of r̃i is determined by
r̃d . 0. Therefore large enough negative moments con-
tinue to grow exponentially and become infinite in the
steady state, which corresponds to the formation of the
power-law asymptotic behavior for the PDF of the concen-
tration near n � 0: P �n� ~ n2ab21. Negative moments
are determined by the regions void of particles where dif-
fusion is irrelevant.

We now consider the moments determined by con-
figurations that violate (6), in particular those with a . 0.
At large enough times, the particles that originated from
different viscous intervals at t � 0 come into contact at
t � t0. Such contributions are not fully correlated and
partially cancel each other. For the Reynolds number of
the order unity, the velocity is decorrelated at r * ry . Ad-
vection becomes equivalent to Brownian motion, for which
all the contributions are canceled out, and the growth
stops at t � l21 ln�ry�rd�. The saturated moments are
proportional to powers of the large parameter ry�rd . If
the turbulence is developed, that is, Re ¿ 1, then fluid
velocity has power-law correlations at r . ry : du ~ rx

with x # 1 (x � 1�3 in the Kolmogorov phenomenology
of the energy cascade). The compressible component of
the particles’ flow is proportional to �u ? =�u and scales
as follows at r . ry: dy ~ r2x21. As we shall show
below, the behavior of concentration is determined by the
relative compressibility dy�du ~ rx21 which is maximal
at the viscous scale. The result is that the velocity modes
from the inertial interval do not increase the level of
concentration fluctuations beyond what has been produced
on the viscous scale.

Unfortunately, we still lack the formalism to describe
Lagrangian motion in the inertial interval with the
same degree of universality as in the viscous interval.
However, to understand the most essential properties of
the concentration fluctuations one can use the standard
model of a short-correlated Gaussian velocity with the
variance �ya�t, r, �yb�0, 0�	 � d�t��V0dab 2 Kab�r��
and Kab � �ru0 1 �d 1 1�u 2 c�r2dab 2 �ru0 1 2u 2

c�rarb [12,14]. The functions u�r� and c�r� are smooth
at r ø ry : u�r� 2 u�0� ~ r2 and c�r� 2 c�0� ~ r2. In
the inertial interval, ry ø r ø L, u�r� 2 u�0� ~ r2g

and c�r� 2 c�0� ~ r23g , where 0 # g # 2. Kolmogorov
value is g � 2�3. Conditions u ~ r22 and c�u ! 0
provide decorrelation at r ¿ L. For nonzero g, the ratio
e � c�u (measure of relative compressibility) increases
as r decreases in the inertial interval and saturates in the
viscous interval at e0. The pair correlation function of
the concentration f � �n�t, 0�n�t, r�	 satisfies a closed
equation

≠tf � L̂f � =a=b�Kabf� 1 2k=2f . (8)

One can prove that the operator L̂ has a nonpositive, con-
tinuous, and nondegenerate spectrum [6]. At large times,
the correlation function thus relaxes to the zero-energy
eigenmode fst of L̂:
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fst � exp

∑Z `

r

xc�x� dx
x2u�x� 1 2�d 2 1�k

∏
. (9)

Assuming c ~ r222d, d . 0 at r ¿ L we obtain there
fst 2 1 ~ �L�r�d. The behavior of fst in the inertial in-
terval, ry ø r ø L, crucially depends on whether u and
c have the same scaling exponents. As we have seen, that
requires the velocity field to be spatially smooth (g � 0)
which takes place only in 2D vorticity cascade (up to loga-
rithmic corrections). That type of turbulence is believed to
be realized at the scales larger than few hundreds kilome-
ters in the atmosphere so that our theory may be relevant
for the description of clustering of atmospheric balloons
observed in [15]. In this case, fst�r� behaves as a negative
power of r . The fluctuation variance can be estimated as
fst�rd�, which is then proportional to a positive power of
the Reynolds and Schmidt numbers:

�n2 2 1	 � �L�rd�e0 , (10)

If, however, the velocity is not smooth in the iner-
tial interval, u and c have different scaling exponents,
and Eq. (9) shows that the main growth of fst occurs
below the viscous scale. Hence �n2	 is independent of
the Reynolds number. For example, for the Kolmogorov
scaling of energy cascade, the solution (9) has the form
lnfst ~ a4r24�3r28�3

y b22 at r . ry . Therefore, the fluc-
tuations of the concentration are mainly produced in the in-
terval of scales r & ry , where the fluid velocity is smooth:

�n2 2 1	 � �ry�rd�e0 . (11)

For both (10) and (11), one can estimate the degree of
compressibility as e0 � b22�a�ry�4. Since by definition
rd $ a, significant fluctuations are possible only for heavy
particles with b 
 2r�3rp , �a�ry�2 ln1�2�ry�rd�.

We thus conclude that the fluctuations of concentration
are produced by the scales r , ry where the velocity is
spatially smooth. For the ath moment of the concentration
one has in the steady state

�na	 � �ry�rd�bae0 . (12)

Apart from the expression for the particle velocity (1), all
the rest of our theory is valid for e � 1 as well. The mo-
ments are due to configurations which compress a region of
size ry into that with the smallest size reaching rd at the
time of observation. This picture agrees with the above
statement that ba ~ a at large a.

The fluctuations of concentration may influence differ-
ent physical and chemical phenomena that involve inertial
particles. Consider a simple (yet important) example of
a gas with the concentration x�r, t� that can condensate
on aerosol particles: dx�dt � 2n�x 2 xeq�. Being in-
terested in the evolution of the spatial average x̄�t� one is
tempted to replace n�r, t� by n̄, which would give an expo-
nential decay of x 2 xeq ~ exp�2n̄t�. The true decay in
a turbulent flow has to be generally slower. The power tail
of P �n� near zero gives x̄ 2 xeq ~

R
exp�2nt�P�n� dn ~

tab , as long as one may neglect the diffusion of the gas
from the regions with low concentration of particles.

The regions of high concentration also play an important
role. For example, in the atmospheric boundary layer, the
viscous scale of 3D turbulence is ry � 1021 1022 cm so
that we expect the concentration of atmospheric aerosols
to have significant fluctuations on the scale of a millimeter
or so. One important consequence of the phenomenon
described is that solid aerosols (like lead particles from the
exhaust pipes) may enter respiratory tracks in dense mil-
limeter bunches rather than being uniformly distributed,
this may have repercussions for human health. Another
potential application of our theory is the description
of the statistics of cloud formation both because solid
particles can serve as cloud condensation nuclei and
because the concentration of water droplets also may have
large fluctuations in a turbulent atmosphere. A particular
long-standing problem is to describe how millimeter-size
droplets (necessary to trigger rain) appear from a suspen-
sion of micron-size droplets. We believe that clustering
of droplets on a viscous scale of turbulence described
here is of paramount importance for the proper theory
of precipitation; the quantitative description requires
further work.
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