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We present a novel method for the calculation of the fractal dimension of boundaries in dynamical
systems, which is in many cases many orders of magnitude more efficient than the uncertainty method.
We call it the output function evaluation (OFE) method. We show analytically that the OFE method is
much more efficient than the uncertainty method for boundaries with D , 0.5, where D is the dimension
of the intersection of the boundary with a one-dimensional manifold. We apply the OFE method to a
scattering system, and compare it to the uncertainty method. We use the OFE method to study the
behavior of the fractal dimension as the system’s dynamics undergoes a topological transition.
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Motivation.— In dynamical systems with two or more
well-defined asymptotic states (examples are found in sys-
tems with attracting or repelling sets), the boundary in
phase space separating initial conditions corresponding to
distinct final states (that is, belonging to different basins)
may have a fractal structure; in this case one says that
the system has a fractal basin boundary [1]. This means
that sets of points in phase space which undergo very dif-
ferent time evolutions are mixed in a complex way in all
scales. Fractal basin boundaries are found in many im-
portant physical systems, such as in astrophysics [2], scat-
tering systems [3], systems with escapes [4], dissipative
systems [5], etc. The occurrence of fractal basin bounda-
ries implies a great sensitivity of the long-time evolution
of the system to perturbations in the initial conditions.
This sensitivity to initial conditions is characterized by the
box-counting dimension d of the basin boundary, which
is interpreted as a measure of the degree of uncertainty
about the final fate of a system with fractal basin bounda-
ries [6]. The box-counting dimension is one of the most
important quantities for characterizing these boundaries.
Denoting the dimension of the total phase space by dps,
d satisfies in general dps 2 1 # d , dps. d � dps 2

1 for regular boundaries, and d . dps 2 1 for fractal
boundaries.

Because of its fundamental physical significance, it is
very important to have efficient numerical methods for cal-
culating d with good precision. The best method known
so far is the uncertainty method, which is based on a direct
exploitation of the final state uncertainty reflected in d [6].
The uncertainty method is very efficient for high values
of d (that is, for d close to dps), but it is inefficient for
low values of d (close to dps 2 1), when the basin bound-
ary departs only a little from a smooth manifold. This is
because the number of initial points whose orbits are in-
tegrated for a calculation of d in this method for a one-
dimensional set of initial conditions behaves as eD21,
where D is the reduced dimension D � d 2 dps 1 1, and
e is the smallest scale used in the computation, which de-
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fines the precision in the calculation: the smaller e is, the
higher the precision will be. D is the dimension of the in-
tersection of the boundary with a generic one-dimensional
segment in phase space, and is bounded by 0 # D # 1.
We see that for D close to 0, this method is very inefficient,
because in this case the number of integrated orbits grows
rapidly as e decreases. Motivated by this, we introduce
in this Letter a new method for the numerical calculation
of the box-counting dimension that is highly efficient for
small values of D, and it is in this respect complementary
to the uncertainty method. We call our method the output
function evaluation (OFE) method. Specifically, we show
that the number of integrated orbits in the OFE method
scales as e2D . We then apply the method to a scattering
system and compare its results and performance with the
uncertainty method. We show that the two methods give
the same result (as of course they should), but that for low
D our method is several orders of magnitude more effi-
cient. Finally, we apply the OFE method to this scattering
system and we show that the fractal dimension shows a
characteristic behavior at a critical energy for which the
invariant set suffers a topological transition.

Method.—We start with a brief exposition of the uncer-
tainty method. Consider a one-dimensional set C in the
phase space. Take now a pair of points in C separated by
a distance l, in a random position in C. The probability
P�l� that the two points belong to different basins scales as
P�l� � l12D . The uncertainty method amounts to a direct
calculation of P�l� for many values of l, thereby obtain-
ing D. This is done by choosing randomly many pairs of
l-separated points, and numerically integrating their cor-
responding trajectories. For a large number of pairs, the
fraction of pairs which evolves to distinct final states for
a given separation l should approach P�l�. Doing this for
several values of l, one can find D by fitting P�l� to a power
law. The precision of the resulting D obtained in this way
depends ultimately on the smallest value for l used in the
computation, which we denote by e. For e small enough,
the total number of initial conditions Nunc integrated in the
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computation of the uncertainty method scales as 1�P�e�,
that is,

Nunc�e� � eD21. (1)

Since the computation time is roughly proportional to
Nunc, one sees that although being very efficient for D
close to one, this method is definitely inefficient for D
near zero.

The reason why the uncertainty method is inefficient for
D close to zero is that for low D the volume occupied by
the boundary for a given resolution e (with e small) is very
small, and the vast majority of pairs of initial conditions
will fall on the same basin. Since one needs to find a
minimum number of pairs of points belonging to different
basins in order to have a reasonable statistics for P, this
causes Nunc to become very large, and to grow very rapidly
as e decreases. To calculate low D values, we need a
method that “focuses its attention” on the vicinity of the
boundary, and concentrates its evaluations there. This is
exactly what the OFE method does, and we explain it next.

Our method is based on the computation of suitable out-
put functions of the system; these are functions relating the
values of particular variables of the system after it reaches
one of the final states (e.g., after it converges to a neighbor-
hood of an attractor in a dissipative system) to the initial
conditions that led to that time evolution. One example is
the time t it takes to reach the final state; another example
is the deflection angle f�b� as a function of the impact
parameter b in scattering systems. We restrict ourselves
to output functions whose domain is a one-dimensional
submanifold of the phase space which intersects the basin
boundary. If the boundary is fractal, so is its intersec-
tion with this submanifold. The output functions mirror
the geometrical structure of the basin boundary, and if the
boundary is fractal, so are the output functions, and in this
case they have a fractal set of singularities with the same
dimension D as the basin boundary.

Although our method works with many choices of out-
put functions, in order to clarify the exposition, from now
on we assume for definiteness that we are dealing with a
scattering system, and we choose the output function to be
the deflection angle f�b�. We have to calculate f with
a resolution given by e, with e being very small. The
straightforward method of laying on a given interval of b
an e-size grid and calculating f for the points on the grid
is not good, since the number of integrations goes as e21,
which is even more inefficient than the uncertainty method.
To improve this, we use a variable-sized grid. The idea is
to adjust the size of the grid on b (the step size) so that the
oscillations in f are well resolved, with the minimum size
of the grid given by the resolution e. For values of b away
from the boundary, f is smooth, and the grid size can be
large, whereas for b close to the boundary, f is very steep
and typically shows very wild oscillations; in this latter
case, the grid size needs to be small to resolve f. The
steepness of f for a given b is measured by the modulus
of its derivative jdf�dbj, and we choose the grid size D to
be proportional to 1�jdf�dbj, with the constraint D $ e.
In this way, most of the computing will happen near the
fractal region of f, that is, near the basin boundary.

The method is implemented as follows. For a given b
interval �bin, bfin�, f is calculated sequentially for a set
of b values b0, b1, b2, . . . , bj , . . . , with bj , bj11. We
proceed by first choosing b0 � bin, b1 � bin 1 e, and
by integrating initial conditions corresponding to b0 and
b1, we compute f�b0� and f�b1�, which we denote by f0
and f1, respectively. Generally, we use the notation fj �
f�bj�. Now from b0 and b1 we obtain b2 from b2 �
b1 1 D1, where the step size Dj is given by

Dj �

8<
:

jj , if e # jj # Dmax ,
e, if jj , e ,
Dmax, if jj . Dmax ,

(2)

with

jj � min

µ
d

jdf�bj��dbj
, aDj21

∂
, (3)

where Dmax, d, and a are constant parameters.
df�bj��db is the derivative of f calculated at b � bj .
The idea is that the step size Dj be chosen so that
fj11 2 fj � d, to a first-order approximation. In other
words, the step size is chosen so that the variation of f

from one point to the next is kept approximately constant;
this is the key idea of our method. However, we do
not allow the step size to grow too much from one step
to the next: Equation (3) ensures that Dj�Dj21 # a,
with a . 1 giving the constraint on the growth of the
step size. This avoids problems near extrema, where
df�b��db � 0 and the first-order estimate of fj11 2 fj

is not valid. Also, Dj is restricted to be within the interval
�e, Dmax�. We use the two-point approximation for the
derivative df�bj��db:

df�bj�
db

�
fj 2 fj21

Dj21
. (4)

Now from b2, we calculate f2, and obtain b3 through
b3 � b2 1 D2, and so on. The computation is stopped
when we reach step N for which bN . bfin.

Once we have calculated f�b� by this procedure, the
fractal set of singularities is given (to resolution e) by
points bj such that jbj 2 bj21j . b, with b being a pa-
rameter satisfying b . d. This means that we pick the
points bj corresponding to regions where the output func-
tion shows oscillations on scales smaller than e. The re-
sults of the method are independent of the value chosen
for b.

Now that we are in the possession of a set of points M
approximating the boundary to resolution e, we proceed
to calculate the fractal dimension. We could use a direct
implementation of the definition of the box-counting di-
mension, but we prefer to use a more powerful method,
described in [7,8], which we explain briefly now. For each
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point bi in M, we count the number ni�l� of points in M
that lie within a distance l of bi . It can then be shown [7]
that the average of 1�ni�l� over all points in M scales with
l as ø

1
n�l�

¿
� l2D , (5)

where D is the reduced dimension. From Eq. (5), we
obtain D by calculating �1�n�l�� for many values of l (with
l small), and fitting the results to a power law.

We now estimate how the number of integrations NOFE
of the OFE method scales with the resolution e. By con-
struction, in the OFE method most of the integrations are
performed for points in the vicinity of singularities in the
output function, where the function is the steepest. For a
small enough e, NOFE is therefore proportional to the num-
ber of singularities that are resolved with resolution e; but
by the definition of the box-counting dimension, this num-
ber is proportional to e2D . Therefore, we have the result

NOFE � e2D . (6)

For D close to zero, NOFE grows very slowly, and the
OFE method is much more efficient than the uncertainty
method; the opposite holds for D close to one. To better
compare the two methods, we define f�e� to be the ratio
of NOFE and Nunc. From Eqs. (1) and (6), we have

f�e� �
NOFE

Nunc
� e122D . (7)

We see that f ! 0 for e ! 0 if D , 0.5. This means
that for D , 0.5 (and e small enough) the OFE method is
more efficient than the uncertainty method, and it becomes
ever more so as e decreases. In fact, we will see in the
example that follows that the difference in efficiency can
be of many orders of magnitude. On the other hand, if
D . 0.5, f ! ` for e ! 0; in this case, the uncertainty
method is the more efficient one.

Example.—We exemplify our method with a Hamilton-
ian scattering system with two degrees of freedom, de-
scribed by a potential function V �x, y�, where V is required
to be highly localized around the origin. To exemplify our
results, we use a potential that is a superposition of three
repulsive Gaussian hills:

V �x, y� �
3X

i�1

Vi exp�2r2
i �2s2

i � , (8)

where

r2
i � �x 2 xi�2 1 �y 2 yi�2. (9)

�xi , yi� are the coordinates of the centers of the three hills.
Vi and si are constants, and give the height and the spread
of each hill, respectively. Potentials of the form (8) are
paradigms of chaotic scattering, and have been extensively
studied [9]. For our example, we choose the parame-
ters to be x1 � 2x2 � 4, y1 � y2 � 0, x3 � 0, y3 � 2;
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V1 � V2 � 10, V3 � 1; s1 � s2 � 0.75, s3 � 0.325.
For this potential, there is a transition from regular to
chaotic scattering as the energy of the incoming particle
drops below a critical energy Ec, with Ec . 1.

We now proceed to apply the OFE method to this sys-
tem. For the output function we choose the deflection
function f�b�, calculated for a one-dimensional set of ini-
tial conditions on the segment y � 210, 0 , x , 4, with
initial velocity parallel to the y axis. The initial position
is sufficiently far away from the origin so that the par-
ticle can be considered to be initially in free motion, and
the velocity is fixed by the energy constraint y0 �

p
2E.

In this case, the impact parameter b is simply the x co-
ordinate. Each initial condition is integrated until its dis-
tance from the origin becomes greater than 10, when it
can be considered to be in free motion again. The deflec-
tion angle f is found by integrating the quadrature �u �
�xyy 2 yyx��

p
x2 1 y2 along the trajectory, with f be-

ing given by the value of u after the particle is scattered.
We now calculate f�b� by the OFE method, with e �

10210, a � 2, d � 0.03, and Dmax � 1023, for E �
0.95. We then find the approximation M to the fractal set
of singularities of f as explained above, using b � 0.5.
Next we calculate the fractal dimension from M, using
the method described above [7,8]. The result is shown
in Fig. 1a, which is a plot of the logarithm of �1�n�l��
as a function of l. The points clearly define a straight
line, and from its inclination we get the dimension D �
0.238 6 0.002. We have also calculated D by the uncer-
tainty method. In Fig. 1b, the fraction g�l� of l-separated
pairs of initial conditions with f differing by at least
b � 0.5 are plotted against l, in a log-log plot. For
each l, we keep integrating pairs of points until 100 pairs
have been found with f differing by b or more. D is
found from a least-square fit of the points in Fig. 1b and
using Eq. (1) to be D � 0.24 6 0.02. The results of the
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FIG. 1. (a) Determination of the fractal dimension by the OFE
method. The fit gives D � 0.238 6 0.002. (b) Result of the
uncertainty method. The fit gives D � 0.24 6 0.02.
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FIG. 2. Reduced dimension D as a function of the energy E.

two methods agree, as they should, but the result of the
OFE method is ten times more accurate than that of
the uncertainty method, even though the number of
integrated points in the OFE calculation was only about
26 000, compared to about 1.5 3 106 integrations that
were necessary in the uncertainty method. Note that in
Fig. 2b the function g was not extended to e � 10210,
because that would require an unreasonable number of
integrations. From Eq. (1) we can estimate the number of
integrations Nunc necessary to extend g down to l � e;
using the value 0.24 for D, we find Nunc to be over 1010,
which is prohibitively large, and is 6 orders of magnitude
larger than the number of integrations in the OFE method.
This shows the superiority of the OFE method over the
uncertainty method for D , 0.5.

The potential (8) undergoes a topological change in the
phase space as the energy drops below E � 1, due to the
appearance of a new forbidden region around hill 3. At
this energy there is a sudden change (a metamorphosis) in
the topological structure of the invariant set [9]. We ex-
pect this metamorphosis to imply a characteristic behavior
of D in the vicinity of E � 1. To test this, we apply the
OFE method to obtain D as a function of E for E close
to 1. The result is shown in Fig. 2. We see that D has a
minimum at E � 1, and D�E� exhibits a cusp at this en-
ergy. Notice that a high accuracy in the computation was
necessary to resolve the behavior of D at the metamorpho-
sis. The calculation of Fig. 2 using the uncertainty method
would require a prohibitively large amount of computation
to come up with the same results.

We note that in the particular case of scattering in two
dimensions, it can be shown that all the thermodynamical
quantities associated with the fractal invariant set can be
obtained from the time delay function [10]. This means
that we can use the OFE method to compute any such
quantity, including for example, the topological entropy.

In summary, we have presented the OFE method for the
calculation of the fractal dimension which is much more
efficient than the uncertainty method for D , 0.5. We
illustrated the method with a scattering system, and we
have shown for that case that our method is many orders
of magnitude more efficient than the uncertainty method.
We used the OFE method to show that the fractal dimen-
sion displays a characteristic behavior at a topological tran-
sition of the well-known three-hill system, which would
have been very difficult to be resolved by the uncertainty
method.
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