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Quantum dynamical equations of motion for homodyne detection of the degenerate optical parametric
oscillator are solved exactly. Nonclassical photon statistics are shown to be a consequence of interfer-
ence of probability amplitudes, entanglement of photon pairs from such an oscillator, and the role of
measurement in quantum evolution.
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Fluctuations of photon beams reflect the quantum dy-
namics of photoemissive sources. In quantum mechanics,
probabilities for observed events are derived from an un-
derlying wave function that can interfere and collapse as it
evolves. A consequence of this is that quantum mechan-
ics can lead to correlations between observed events which
a classical stochastic theory may not. Examples of these
nonclassical correlations include squeezing, antibunching,
and violations of Bell’s inequalities [1,2].

The subthreshold degenerate parametric oscillator
(DPO) has played a central role in the study of nonclassi-
cal photon correlations, particularly, squeezing [1,2]. The
DPO radiates a highly bunched light beam that exhibits a
large degree of squeezing. Interestingly, the squeezed and
highly bunched light from the DPO when combined with a
coherent light field, as in homodyne detection, is expected
to display a rich variety of nonclassical photon correlations
including antibunching [3]. It is intriguing that a highly
bunched entangled photon beam from the DPO when
mixed with a coherent field will exhibit correlations similar
to those exhibited by a single-atom resonance fluorescence
in free space or in cavity quantum electrodynamics (QED)
[4,5]. Antibunching of light emitted by a single two-level
atomic system can be eventually traced to the atomic dead
time that a two-level atom cannot emit a second photon
immediately after the emission of a first photon. The situ-
ation is not so simple for homodyne detection of the light
from the DPO because there is no obvious mechanism
for a dead time. By solving the equations of motion for
homodyne detection exactly, we show that nonclassical
photon correlations in homodyne detection of the DPO are
a consequence of the interference of probability ampli-
tudes, entangled nature of photon pairs generated by the
DPO, and measurement. These are the features that most
distinguish quantum mechanics from classical mechanics.

An outline of the experimental setup for homodyne de-
tection of the DPO light is shown in Fig. 1. The DPO and
local oscillator (LO) fields are combined by a beam splitter
to produce the source field at the detector. The field from
the DPO is governed by the interaction Hamiltonian for a
phase matched DPO driven by a classical injected signal
0031-9007�01�86(13)�2770(4)$15.00
of amplitude ´ [6]:

Ĥ �
ih̄k´

2
�ây2
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Here k is the mode-coupling constant and âd and â
y
d are

the annihilation and creation operators, respectively, for
the DPO. Ĥloss describes the loss suffered by the DPO
field. The combination k´ can be chosen to be real by a
suitable definition of phases.

The equation of motion for the density matrix r̂d of the
DPO field is then
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where 2g is the cavity decay rate. The steady-state solution
to this equation in positive-P representation is given by
[6,7]
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where 2` , x, y , ` are both real variables and jx� is a
coherent state of âd with âdjx� � xjx�. From this expres-
sion for the density matrix, the steady-state expectation
value of an operator Ô can be calculated as �Ô�ss �
Tr�Ôr̂ss�. This leads to the following expectation values

FIG. 1. Schematic experimental setup for the homodyne de-
tection of the light from a degenerate parametric oscillator.
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for the DPO field:
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� n̄d , (4a)

�âd�ss � �ây
d �ss � 0 , (4b)

�â2
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d �ss �
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n̄d . (4c)

The mean photon number n̄d for the DPO depends only on
the ratio k´�g and the steady-state mean field amplitude
�âd�ss for the DPO given by Eq. (4b) is zero.

The light emitted by the DPO is combined with the light
from a coherent local oscillator (annihilation operator â�)
by the beam splitter in Fig. 1 to produce the superposed
field at the detector [3]

â �
p
R â� 1

p
T âd , (5)

where T and R denote the power transmittivity and re-
flectivity of the beam splitter, respectively. Here we have
assumed the local oscillator field is radiated by a cavity
prepared in a coherent state. All measurements in this pa-
per refer to the superposed field given by Eq. (5). We will
call this field the homodyne degenerate parametric oscil-
lator (HMDPO) field. The steady-state density matrix for
the HMDPO field is

r̂ss � �ja�� �a�j�
1

p
2n̄d p

ZZ
dx dy

jx� � yj
� y j x�

3 e2xy2�g�k´� �x21y2�, (6)
where ja�� is the LO coherent state. The average field am-
plitude and photon number for the HMDPO are calculated
with the help of Eq. (6) to be

�â�ss �
p
Ra� , (7a)

�âyâ�ss � Tr�r̂ssâ
yâ� � Rn̄� 1 T n̄d � n̄ss . (7b)

Thus the average field radiated by the DPO in the steady
state is zero and the average photon number is the sum
of the contributions from the DPO and the LO (no phase
coherence between the DPO and LO fields). Let us
now look at the second-order intensity correlation func-
tion g�2��t� � �ây�0�ây�t�â�t�â�0��ss��âyâ�2

ss for the
HMDPO field. This correlation function is proportional
to the probability of detecting a photon at time t � t

conditioned on the detection of a first photon at time
t � 0 starting in the steady state. We can therefore write
g�2��t� as
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ss

�
�ây�t�â�t��c

n̄ss
,

(8)
where we have used the fact that the probability of de-
tecting the first photon is proportional to �ây�0�â�0��ss �
�âyâ�ss � n̄ss. The probability of detecting the second
photon is thus proportional to the conditional mean photon
number �ây�t�â�t��c evaluated with respect to the reduced
density matrix after the first detection.

After the first detection at t � 0 the state of the system
reduces to [8]
r̂c�0� �
âr̂ssây

Tr�r̂ssâyâ�
�

âr̂ssây

n̄ss
. (9)

With the help of the reduced density matrix (6) and (9),
the mean values immediately after the first detection are
found to be
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�ây2�0��c �
3g

k´
n̄dT 1

a
�2
� R

n̄ss
�n̄�R 1 3n̄dT � .

(10d)
Note that after the detection of the first photon, the mean
field amplitude for the HMDPO jumps from

p
Ra� to

that given by (10a). This jump is caused by the disconti-
nuity in the mean field emitted by the DPO which acquires
a nonzero expectation value. The expectation values in
Eqs. (10) serve as the initial values for the evolution of the
system toward steady state.

The equations of motion for the time evolution of the
HMDPO field variables can be derived using Eqs. (2) and
(5). We recall that the LO state ja�� reduces to itself after
the detection of each photon so that � �̂a�� � 0. We then
obtain the following dynamical equations for the HMDPO
field:

d
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These equations form a closed set and can be solved exactly for the time dependence of expectation values as the reduced
state evolves toward the steady state. With initial values given by Eqs. (10) the results for the relevant quantities are
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Here the decay constants l1 � g 2 k´ and l2 � g 1 k´. With the help of Eqs. (8) and (12) we find that the intensity
correlation function g�2��t� for the HMDPO field is given by

g�2��t� � 1 1
n̄dT

2

4n̄2
ss

µ
l2

l1
e22l1t 1

l1

l2
e22l2t
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n̄2
ss

∂ µ
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l1
cos2f 2

e2l2t

l2
sin2f

∂
, (13)
where f � arg�a�� is the LO phase and n̄ss is given by
Eq. (7b). The local oscillator phase refers to the pump
field. This result can also be obtained directly from the cor-
relation functions of the noise sources [3]. The second term
of g�2��t� represents excess fluctuations contributed by the
DPO field. The third term in g�2��t� arises due to the inter-
ference between the LO and the DPO after the detection
of a first photon. Figure 2 shows several plots of g�2��t�
for f � p�2, all exhibiting violations of one or more of
the classical Schwartz inequalities g�2��0� $ 1, g�2��0� $

g�2��t�, and jg�2��0� 2 1j $ jg�2��t� 2 1j [9]. These
nonclassical correlations illustrate the interference of
probability amplitudes, measurement induced coherence,
and the entangled nature of photons from the DPO. In the
following we will focus on the case f � p�2 because
nonclassical effects are most pronounced in this case.

Figure 3 shows the time evolution of the HMDPO field
amplitude over an interval during which a first photode-
2772
tection occurs. Before detection, in the steady state, the
HMDPO field amplitude has value

p
R a�, which for f �

p�2 is a positive imaginary quantity. Note that the DPO
contributes nothing to the steady-state average HMDPO
field. The field amplitude has been normalized so that
its steady-state value is unity. When a photon is de-
tected the mean field amplitude changes discontinuously
from the steady-state value �â�ss �

p
Ra� to the value

�â�0��c given by Eq. (10a). This mean the HMDPO am-
plitude may vanish or even become negative imaginary
for f � p�2. After detection the HMDPO amplitude re-
laxes along the imaginary axis back to the steady-state
value. During its passage to the steady state it can van-
ish at some nonzero delay if initially it starts out negative
imaginary. If the reduced state of the HMDPO were a co-
herent state, the normalized intensity correlation function
would be
g
�2�
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µ
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e22l1t cos2f 1
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∂
1

k´T

n̄ss

µ
e2l1t

l1
cos2f 2

e2l2t

l2
sin2f

∂
. (14)
This function must vanish whenever �â�t��c vanishes. It
is shown by the dashed curves in Fig. 2 for f � p�2 and
is seen to be a good approximation to the exact correlation
function (continuous curves) for the parameters used in
the figure. The minima of g�2��t� reflect the delays where
�â�t��c vanishes. The differences in g�2��t� and g

�2�
coh�t�

near the minima are due to the second term in Eq. (13)
representing the incoherent fluctuations of the DPO. The
importance of this term decreases as n̄d gets smaller and
for n̄d ø 1 the coherent result g

�2�
coh�t� is a good approxi-

mation to the exact correlation function.
The discontinuity of the HMDPO field amplitude which

leads to a vanishing field is actually due to the discontinu-
ous change in the field radiated by the DPO when the first
photon is detected. The mean field radiated by the DPO is
zero before measurement [Eq. (4b)] and changes discon-
tinuously to �âd�0��c �

p
RT �n̄d�n̄�� �a� 1 �g�k´�a�

��.
For small n̄d (which implies g�k´ ¿ 1) and f � p�2,
the conditioned DPO field amplitude is �âd�0��c 	p
RT �gn̄d�k´n̄��a�

� � 2
p
RT �gn̄d�k´n̄��a�. Thus

after the detection of the first photon, the field radiated
by the DPO is out of phase with the LO field. It can
cancel and even exceed the LO field as seen in Fig. 3.
This phase coherence is an example of measurement
induced coherence. The first detected photon could have
come from the LO (with probability Rn̄��n̄ss) or the
DPO (with probability T n̄d�n̄ss). These possibilities
exist as a superposition of probability amplitudes, not
as classical choices. The interference of probability
amplitudes therefore plays an important role in giving
rise to the postdetection coherence between the DPO and
the LO fields. It is remarkable that although the DPO
field is much weaker than the LO field (T n̄d ø Rn̄�),
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FIG. 2. Two-time intensity correlation function g�2��t� as a
function of scaled time 2gt for n̄d � 1025, f � p�2 and
several different values of the ratio �n̄�R�n̄dT � � 500 (a);
250 (b); 140 (c); and 100 (d). The dashed curves show g

�2�
coh�t�

for the same parameters.

the postdetection field radiated by the DPO can cancel or
even exceed the LO field. The reason for the enhanced
postdetection emission from the DPO is that photons are
created as entangled pairs inside the cavity. When the first
photon of a pair is detected the conditioned mean photon
number for the DPO increases and it emits at an enhanced
rate to ensure that the second photon is emitted within
�2g�21 of the first.

Nonclassical behavior of g�2��t� is a direct consequence
of postdetection coherence induced by the measurement
and the entangled nature of photon pairs from the DPO.
As a result of the induced phase coherence, the interfer-
ence term

p
RT �a��ây

d �t��c 1 a
�
��âd�t��c� in Eq. (12c)

gives a nonzero contribution leading to the third term in
Eq. (13). In the steady state (before detection) such an
interference term contributes nothing. Enhanced postde-
tection emission, out of phase with the LO, allows the in-

FIG. 3. Evolution of the reduced state field amplitude normal-
ized to the steady-state field amplitude �â�t��c��â�ss as a func-
tion of scaled time 2gt for n̄d � 1025, f � p�2 and several
different values of the ratio �n̄�R�n̄dT � � 500 (a); 250 (b);
140 (c); and 100 (d). At t � 0 a first photon is detected.
terference term to cancel the first two terms in Eq. (12c).
This postdetection enhanced out-of-phase emission is a re-
sult of the entangled nature of photon pairs from the DPO.
It would, for example, be absent for any value of f if the
DPO were replaced by a thermal source.

Induced coherence is reflected also in the conditioned
mean photon number of mode b̂ (Fig. 1). A calculation
similar to the one outlined here shows that after the first
detection from mode â, the DPO radiates in phase (for
f � p�2) into mode b̂. Thus for f � p�2 the field from
the DPO after a first detection interferes destructively with
the LO field at the port where the first detection occurs and
constructively at the other port.

When f deviates from 6p�2, the reduced HMDPO
field amplitude does not vanish because a

�
� and a� are

not p out of phase and their real parts never vanish. Con-
sequently, as f deviates from 6p�2 and approaches 0,
the nonclassical features are gradually washed out. The
nonclassical correlations described here are not directly
related to squeezing. This can be seen by noting that
by adjusting the beam splitter transmittivity we can de-
grade squeezing but these correlations persist so long as
the ratio Rn̄��T n̄d stays the same. Also note that in
the limit n̄d ø 1 the field from the DPO shows negligible
squeezing, whereas the correlations described here are the
strongest. Likewise, as n̄d increases, squeezing increases
(until the threshold is reached), whereas the nonclassical
correlations weaken.

The features of quantum mechanics that most distin-
guish it from classical mechanics are the interference of
probability amplitudes, entanglement, and the role of mea-
surement in the quantum mechanical evolution of a system.
The nonclassical behavior of photons in homodyne detec-
tion of the light from a degenerate parametric oscillator
illustrates all of these within the context of a simple ex-
actly solvable model.
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