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We investigate the predictive power of the Collins, Soper, and Sterman b-space QCD resummation
formalism for transverse momentum (QT ) distributions of heavy boson production in hadronic collisions.
We show that the predictive power has a strong dependence on the collision energy

p
S in addition to its

well known Q2 dependence, and the
p

S dependence improves the predictive power at collider energies.
We demonstrate that, at the Fermilab Tevatron and the CERN LHC energies, the QT distributions derived
from b-space resummation are not sensitive to the nonperturbative input at large b, and give good
descriptions of the QT distributions of heavy boson production at all transverse momenta QT # Q.
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With new data from Fermilab Run II on the horizon and
the LHC in the near future, we expect to test quantum chro-
modynamics (QCD) to a new level of accuracy, and also
expect that a better understanding of QCD will underpin
precision tests of the electroweak interactions and particle
searches beyond the standard model [1]. As pointed out in
Ref. [1], the description of vector and scalar boson produc-
tion properties, in particular their transverse momentum
(QT ) distribution, is likely to be one of the most intensively
investigated topics at both Fermilab and the CERN LHC,
especially in the context of Higgs searches. The main pur-
pose of this Letter is to quantitatively demonstrate the pre-
dictive power of QCD resummation formalism for the QT

distributions of heavy boson production at the Fermilab
Tevatron and the CERN LHC. In particular, we concen-
trate on the small transverse momentum region: QT # Q,
where the bulk of the data is. This region is also most rele-
vant to the hadronic Higgs production.

When QT ø Q, the QT distribution calculated in con-
ventional fixed-order perturbation theory receives large
logarithm, ln2�Q2�Q2

T �, at every power of as, which is a
direct consequence of emissions of soft and collinear glu-
ons by incoming partons. Therefore, at sufficiently small
QT , the convergence of conventional perturbative expan-
sion in powers of as is impaired, and the logarithms must
be resummed.

Resummation of the large logarithms can be carried out
either in QT space directly, or in the impact parameter,
b space, which is the Fourier conjugate of QT space. It
was first shown by Dokshitzer, Diakonov, and Troyan that
in the double leading logarithm approximation, the domi-
nant contributions in the small QT region can be resummed
into a Sudakov form factor [2]. By imposing the transverse
momentum conservation without assuming the strong or-
dering in transverse momenta of radiating gluons, Parisi
and Petronzio introduced the b-space resummation method
which allows one to resum some subleading logarithms
[3]. Using the renormalization group equation technique,
Collins and Soper improved the b-space resummation to
resum all logarithms as singular as lnm�Q2�Q2

T ��Q2
T , as
0031-9007�01�86(13)�2724(4)$15.00
QT ! 0 [4]. Using this renormalization group improved
b-space resummation, Collins, Soper, and Sterman (CSS)
derived a formalism for the transverse momentum distri-
butions of vector boson production in hadronic collisions
[5]. This formalism, which is often called CSS formalism,
can be also applied to the hadronic production of Higgs
bosons [1].

For Drell-Yan vector boson (V � g�, W6, Z) produc-
tion in hadronic collisions between hadrons A and B, the
CSS formalism has the following generic form [5]:

dsA1B!V1X

dQ2dydQ2
T

�
1

�2p�2

Z
d2b ei �QT ? �b W̃�b, Q, xA, xB�

1 Y �QT , Q, xA, xB� , (1)

where W̃ gives the dominant contribution when QT ø Q,
while Y gives corrections that are negligible for small
QT , but become important when QT � Q. In Eq. (1),
xA � eyQ�

p
S and xB � e2yQ�

p
S with the rapidity y

and collision energy
p

S. The W̃ in Eq. (1) includes all
powers of large logarithms from ln�1�b2� to ln�Q2� and
has the following form [5]:

W̃�b, Q, xA, xB� � e2S�b,Q� W̃�b, c�b, xA, xB� , (2)

where c is a constant of the order of 1 [5,6], and S�b, Q� �RQ2

c2�b2
dm2

m2 �ln� Q2

m2 �A���as�m���� 1 B���as�m�����, with A�as� and
B�as� perturbatively calculable [5]. The W̃�b, c�b, xA, xB�
in Eq. (2) depends on only one momentum scale, 1�b,
and is perturbatively calculable as long as 1�b is large
enough. The large logarithms from ln�c2�b2� to ln�Q2� in
W̃�b, Q, xA, xB� are completely resummed into the expo-
nential factor exp�2S�b, Q��.

Since the perturbatively resummed W̃�b, Q, xA, xB� in
Eq. (2) is reliable only for the small b region, an ex-
trapolation to the large b region is necessary in order to
complete the Fourier transform in Eq. (1). In the CSS
formalism, a variable b� and a nonperturbative function
FNP�b, Q, xA, xB� were introduced [5],
© 2001 The American Physical Society
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W̃CSS�b, Q, xA, xB� � W̃�b�, Q, xA, xB�FNP�b, Q, xA, xB� ,
(3)

where b� � b�
p

1 1 �b�bmax�2 , bmax � 0.5 GeV21,
and FNP has a Gaussian-like form, FNP � exp�2kb2�
and the parameter k has some dependence on Q2, xA,
and xB. The data are not inconsistent with such a form
[7–10]. However, improvements are definitely needed for
the precision tests of the theory [1,11].

Although the b-space resummation formalism has been
successful in interpreting existing data, it was argued [1,11]
that the formalism has many drawbacks associated with
working in impact parameter space. As listed in Ref. [1],
the first is the difficulty of matching the resummed and
fixed-order predictions; and the second is to know the
quantitative difference between the prediction and the fit-
ting because of the introduction of a nonperturbative FNP.
In the viewing of these difficulties, major efforts have been
devoted to resumming the large logarithms directly in QT

space [1,11].
In the following, we argue and demonstrate that both of

these drawbacks can be overcome. We show that b-space
formalism works smoothly for all QT # Q. We demon-
strate that the Q2 and

p
S dependence of the resummed

b-space distribution ensure that the Fourier transform is
completely dominated by the small b region in high en-
ergy collisions, and consequently, the QT distribution is
insensitive to the details of FNP.

It was known [1] that the b-space resummed QT distri-
bution from Eq. (1) becomes unphysical or negative when
QT is large. For example, a matching between the re-
summed and fixed-order calculations has to take place at
QT � 50 GeV for W production when these two predic-
tions cross over [11]. On the other hand, we expect that the
predictions given by the b-space resummation in Eq. (1)
should work better when QT is large, because the pertur-
batively calculated Y term dominates and the predictions
should be less sensitive to W̃ and its nonperturbative input.
We find that this puzzle was mainly caused by the lack of
numerical accuracy of the Fourier transform from the b
space to QT space.

Since there is no preferred transverse direction, the W̃ in
Eq. (1) is a function of b � j �bj, and the Fourier transform
can be written as

1
�2p�2

Z
d2b ei �QT ? �b W̃�b, Q, xA, xB�

�
1

2p

Z `

0
db bJ0�QTb�e2S�b,Q� W̃

µ
b,

c
b

, xA, xB

∂
,

(4)

where J0�z� with z � QTb is the Bessel function. Because
of the oscillatory nature of the Bessel function, high accu-
racy of the numerical integration over b is crucial for a re-
liable result. The number of oscillations strongly depends
on the value of QT for the same range of b. For example,
when b [ �0, 2� GeV21, J0�QTb� crosses zero 0, 6, and
63 times for QT � 1, 10, and 100 GeV, respectively. It
is clear that numerical accuracy is extremely important for
the large QT region. We noticed that most work published
in the literature used some kind of asymptotic form to ap-
proximate the Bessel function when z � QT b is large. We
believe that the asymptotic form is a source of the uncer-
tainties observed for the large QT region. Instead of us-
ing an asymptotic form, we use an integral form for the
Bessel function J0�z� �

1
p

Rp
0 cos�z sin�u�� du. The great

advantage of using an integral form is that we can control
the numerical accuracy of the Bessel function by improv-
ing the accuracy of the integration. With the integral form
of the Bessel function, we show below that the b-space
resummed QT distributions are smoothly consistent with
data for all transverse momenta up to Q [6].

The predictive power of the CSS resummation formal-
ism relies on the fact that the integration over b in Eq. (4)
is dominated by the region where b � 1�Q, because the
exponential factor exp�2S�b, Q�� in Eq. (4) suppresses the
b integral when b is larger than 1�Q [5]. Using the saddle
point method, it was shown [3,5] that even at QT � 0, the
b integration in Eq. (4) is dominated by an impact parame-
ter of order

bSP �
1

LQCD

µ
LQCD

Q

∂l

, (5)

where l � 16��49 2 2nf� � 0.41 for quark flavors
nf � 5. When Q � MZ or MW , the momentum scale
c�bSP in Eq. (4) is of a few GeV, at which the perturbation
theory is expected to work. Consequently, the predictive
power of the CSS formalism should not be very sensitive
to the FNP at large b as long as Q is large.

The bSP in Eq. (5) was derived with an assumption that
the b dependence in W̃�b, c�b, xA, xB� is smooth around
bSP. We find that the b dependence in W̃�b, c�b, xA, xB� is
important. When xA and xB are small, this b dependence
reduces the numerical value of saddle point, and conse-
quently, increases the predictive power of the b-space re-
summation formalism [6].

Taking into account the full b dependence of
W̃�b, c�b, xA, xB�, the saddle point for the b integra-
tion in Eq. (4) at QT � 0 is determined by solving the
following equation:

d
db

ln�be2S�b,Q�� 1
d
db

ln

∑
W̃

µ
b,

c
b

, xA, xB

∂∏
� 0 . (6)

The bSP in Eq. (5) corresponds to a solution of Eq. (6)
without the second term and keeps only the first order term
of the A�as� in S�b, Q�. As shown in Ref. [6], the second
term in Eq. (6) is proportional to the evolution of parton
distribution f�x, m�: 2

d
d ln�1�b�f�x, m � c

b �. The evolu-
tion �d�d lnm�f�x,m� is positive (or negative) for x ,

x0 � 0.1 (or x . x0), and is very steep when x is far
away from x0. Therefore, the second term in Eq. (6) re-
duces the numerical value of the saddle point when xA

and xB are much smaller than x0. As a demonstration, let
Q � 6 GeV and

p
S � 1.8 TeV. Using CTEQ4 parton
2725
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distribution and LQCD�nf � 5� � 0.202 GeV [12], one
derives from Eq. (5) that bSP � 1.2 GeV21, and might
conclude that perturbatively resummed prediction for QT

distribution at the given values of Q and
p

S is not re-
liable. However, as shown in Fig. 1(a), the integrand of
the b integration in Eq. (4) has a nice saddle point in the
perturbative region at b0 � 0.38 GeV21. This is due to
the fact that xA � xB � 0.003 are very small and the sec-
ond term in Eq. (6) is negative and important. Figure 1(b)
shows that the second term in Eq. (6) (dashed line) cancels
the first term (solid line) at the saddle point b0.

In Figs. 1(c) and 1(d), we show the effect of the sec-
ond term in Eq. (6) on the saddle point of Z production at
the LHC energy. At

p
S � 14 TeV, the

p
S dependence

for Z production improves the value of the saddle point
from b0 � 0.24 GeV21 at

p
S � 1.8 TeV to 0.13 GeV21,

in comparison to an estimated bSP � 0.40 GeV21 from
Eq. (5). The narrow width of the b distribution shown in
Fig. 1(c) also ensures that the b integration is dominated
by b � b0. Similarly, we find the same improvements on
the saddle point and width of the b distribution for Higgs
production at LHC energy [6]. In conclusion, the b-space
resummation formalism for heavy boson production at col-
lider energies should not be very sensitive to the nonper-
turbative input FNP at large b.

To quantitatively demonstrate the sensitivities on the
FNP, we reexamine the extrapolation, W̃CSS, defined in
Eq. (3). We find that using the fitting parameters from
Refs. [7–10] to fix the FNP, the ratio, W̃CSS�b, Q, xA, xB��
W̃�b, Q, xA, xB�, differs from one by as much as 20%
within the perturbative region: b , bmax � 0.5 GeV21.
That is, the W̃CSS�b, Q, xA, xB� introduces a significant
fitting parameter dependence to the resummed b distribu-
tion in the perturbative region.

In order to separate the perturbative prediction in small
b region from the nonperturbative physics at large b, we
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FIG. 1. Integrand of the b integration in Eq. (4) at QT � 0
as a function of b for Q � 6 GeV (a) and Q � MZ (c) with
an arbitrary normalization; and the first (solid line) and second
(dashed line) terms in Eq. (6) as a function of b in (b) and (d) at
the respective Q.
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review the resummation of large logarithms in the CSS for-
malism, and introduce a new functional form for the ex-
trapolation. In Ref. [5], the large logarithms are resummed
by solving the evolution equation

≠

≠ lnQ2 W̃�b, Q, xA, xB� � �K���bm, as�m����

1 G���Q�m, as�m�����
3 W̃�b, Q, xA, xB� , (7)

from ln�c2b2� to ln�Q2�, and the renormalization group
equations for K and G from ln�c2�b2� to ln�m2� and
from ln�m2� to ln�Q2�, respectively [5]. Since the evo-
lution equation and the renormalization group equations
do not include any power corrections, the solution, W̃ in
Eq. (2), is valid only for b , bc with ln�1�b2

c� � b2
c (or

bc � 0.75 GeV21). The choice of bmax � 0.5 GeV21 in
Ref. [5] is consistent with the approximation.

Taking advantage of our early conclusion that heavy bo-
son production at collider energies should not be very sen-
sitive to the large b region, we extrapolate W̃�b, Q, xA, xB�
to the large b region without introducing the b� [6]. For
b , bmax, the W̃�b, Q, xA, xB� is the same as the perturba-
tively calculated one given in Eq. (2). For b . bmax, we
solve the evolution equation in Eq. (7) from ln�c2�b2

max�
to ln�Q2�, and solve the renormalization group equations
for K and G from ln�c2�b2� to lnm2 and from ln�m2� to
ln�Q2�, respectively. Because b . bmax, we add possible
power corrections to the renormalization group equations
of K and G. We find [6]

W̃QZ�b, Q, xA, xB� � W̃�bmax, Q, xA, xB�
3 FNP�b, bmax, Q, xA, xB� , (8)

for b . bmax. Including only the first power correction,
the FNP has the following functional form [6]

ln�FNP� � 2g1��b2�a 2 �b2
max�a� 2 g2�b2 2 b2

max� ,
(9)

where g1, g2, and a�,1� are parameters. Their depen-
dence on Q, xA, and xB, which is more relevant for
the low Q2 Drell-Yan data, is explained in Ref. [6]. In
Eq. (9), the first term corresponds to a direct extrapo-
lation of the logarithmic contributions to the function
K to large b region. The �b2�a dependence is a result
of replacing a series of logarithmic dependence on m2

in the renormalization group equations by �m2�a . The
second term is a consequence of the first power correction
(1�m2) to the renormalization group equations. Since
the saddle point has a small numerical value in b, high
power corrections to the renormalization group equations
of the K and G, which are sensitive to the very large b
region, could be neglected. In addition, we neglect a term,
ln�W̃�b, c�bmax, xA, xB�� 2 ln�W̃�bmax, c�bmax, xA, xB��,
for the ln�FNP� by assuming that parton distributions are
saturated when b . bmax. More detailed discussions on
the functional form of the FNP are given in Ref. [6].
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FIG. 2. Comparison between the b-space resummed QT distri-
bution and CDF data [13]. The inset shows the QT , 20 GeV
region.

We quantitatively test the sensitivities on the FNP by
studying the dependence on bmax, g2, and a. We first set
g2 � 0 (no power corrections) and fix g1 and a in Eq. (9)
by requiring the first and second derivatives of the W̃ to
be continuous at b � bmax � 0.5 GeV21. We plot our
predictions (solid lines) to the QT distributions of Z and
W production at Tevatron in Figs. 2 and 3, respectively.
In Fig. 2, we plot the ds�dQT of e1e2 pairs as a
function of QT at

p
S � 1.8 TeV. The data are from

CDF Collaboration [13]. Theory curves (Z only) are from
Eq. (1) with the W̃ given in Eqs. (2) and (8) for b , bmax
and b . bmax, respectively. CTEQ4 parton distribution
and an overall normalization 1.09 are used [13]. In
Fig. 3, we plot the ds�dQT for W production with the
same bmax and g2 and without any overall normalization
[6]. The data for W production are from D0 Collabo-
ration [14]. The QCD predictions from the b-space
resummation formalism are consistent with the data
for all QT , Q. Furthermore, we let g2 be a fitting
parameter for any given value of bmax. Although the
fitting prefers g2 � 0.4 GeV2, the QT distributions are
extremely insensitive to the choices of bmax and g2. The
total x2 is very stable for bmax [ �0.25, 0.8� GeV21

and g2 [ �0, 1� GeV2. In Figs. 2 and 3, we also plot
the theory curves (dashed lines) with g2 � 0.8 GeV2

(twice of the fitting value). Nonvanish g2 gives a small
improvement to the QT distributions at small QT . We
also vary the value of a in Eq. (9) by requiring only the
first derivative to be continuous at b � bmax, and find
equally good theoretical predictions, except very mild
oscillations in the curves at very large QT due to the
Fourier transform of a less-smooth b distribution. The
observed insensitivity on bmax, g2, and a is clear evidence
that the b-space resummation formalism is not sensitive
to the nonperturbative input at large b for heavy boson
production.

We notice that the theory curve is below the data at large
QT . We believe that it is because we have only the leading
order contribution to the Y term in Eq. (1). At large QT ,
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FIG. 3. Comparison between the b-space resummed QT dis-
tribution and D0 data [14]. The inset shows the QT , 20 GeV
region.

the Y term dominates. Similar to the fixed-order pertur-
bative calculations, the next-to-leading order contribution
will enhance the theoretical predictions [15]. In conclu-
sion, the CSS b-space resummation formalism has a good
predictive power for heavy boson production at Tevatron
energy, and it should provide even better predictions at the
LHC energy [6].
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