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Hydrogen Atom Spectrum and the Lamb Shift in Noncommutative QED
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We have calculated the energy levels of the hydrogen atom as well as the Lamb shift within the
noncommutative quantum electrodynamics theory. The results show deviations from the usual QED both
on the classical and the quantum levels. On both levels, the deviations depend on the parameter of space/
space noncommutativity.
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I. Introduction.—Recently, remotivated by string theory
arguments, noncommutative spaces (Moyal plane) have
been studied extensively. The noncommutative space can
be realized by the coordinate operators satisfying

�x̂m, x̂n� � iumn , (1.1)

where x̂ are the coordinate operators and umn is the non-
commutativity parameter and is of dimension of �length�2;
for a review on the string theory side, see [1]. The
action for field theories on noncommutative spaces is then
obtained using the Weyl-Moyal correspondence [2–4],
according to which, in order to find the noncommutative
action, the usual product of fields should be replaced by
the star product

� f � g� �x� � exp

µ
i
2

umn≠xm
≠yn

∂
f�x�g� y�jx�y , (1.2)

where f and g are two arbitrary infinitely differentiable
functions on R311. Performing explicit loop calculations,
for u0i � 0 cases (noncommutative space), it has been
shown that noncommutative f4 theory up to two loops
[3,5] and noncommutative QED up to one loop [4,6,7] are
renormalizable. For noncommutative space-time �u0i fi

0� it has been shown that the theory is not unitary and
hence, as a field theory, it is not appealing [8].

Apart from the field theory interests which are more
academic, we are more interested in some possible
phenomenological consequences of noncommutativity in
space. Some of those results, all from the field theory
point of view, have been addressed in [4,9–11]. How-
ever, perhaps a better starting point is to study quantum
mechanics (QM) on such noncommutative spaces. To
develop the noncommutative QM formulation we need to
introduce a Hamiltonian which governs the time evolution
of the system. We should also specify the phase space
and, of course, the Hilbert space on which these operators
act. As for the phase space, inferred from the string theory
[12,13], we choose

�x̂i , x̂j� � iuij ,

�x̂i , p̂j� � ih̄dij ,

� p̂i , p̂j� � 0 .

(1.3)
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The Hilbert space can consistently be taken to be exactly
the same as the Hilbert space of the corresponding com-
mutative system. This assumption for the Hilbert space is
directly induced from the nonrelativistic limit of the related
noncommutative field theory, and one can really argue that
it satisfies all the needed properties of a physical Hilbert
space. The only nontrivial part of such a formulation is
to give the Hamiltonian. Once we have done it, the dy-
namical equation for the state jc� is the usual Schrödinger
equation, i.e., Hjc� � ih̄ ≠

≠t jc�.
In this Letter we focus on the hydrogen atom and, using

the nonrelativistic limit of noncommutative QED results,
we propose the Hamiltonian describing the noncommuta-
tive hydrogen atom. Given the Hamiltonian and assum-
ing that the noncommutativity parameter �uij� is small, we
study the spectrum of hydrogen atom. We show that be-
cause of noncommutativity, even at field theory tree level,
we have some corrections to the Lamb shift (2P1�2 !
2S1�2 transition). Since the noncommutativity in space
violates rotational symmetry, our Lamb shift corrections
have a preferred direction, and hence we call them “polar-
ized Lamb shift.” We also consider further corrections to
Lamb shift originating from the loop contributions in non-
commutative QED. In this way we will find some upper
bound for u. In addition, we study the Stark and Zeeman
effects for the noncommutative hydrogen atom.

II. Formulation of the noncommutative Hamiltonian.—
To start with, we propose the following Hamiltonian
for the noncommutative hydrogen atom. Of course, we
shall verify our proposal by a noncommutative QED
calculation:

H �
p̂p̂
2m

1 V �x̂� , (2.1)

where the Coulomb potential in terms of the noncommu-
tative coordinates x̂ is

V �r� � 2
Ze2
p
x̂x̂

, (2.2)

with p̂ and x̂ satisfying (1.3).
Now, we note that there is a new coordinate system,
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xi � x̂i 1
1

2h̄
uijp̂j , pi � p̂i , (2.3)

where the new variables satisfy the usual canonical com-
mutation relations:

�xi , xj� � 0 ,

�xi ,pj� � ih̄dij ,

�pi ,pj� � 0 . (2.4)

So, if in the Hamiltonian we change the variables x̂i , p̂i
to xi , pi , the Coulomb potential becomes

V �r� � 2
Ze2q

�xi 2 uijpj�2h̄� �xi 2 uikpk�2h̄�

� 2
Ze2

r
2 Ze2 xiuijpj

2h̄r3 1 O�u2�

� 2
Ze2

r
2 Ze2

�L ? �u
4h̄r3 1 O�u2� , (2.5)

where ui � eijkujk , �L � �r 3 �p.

As ��r 3 �p� ? �u � 2�r ? � �u 3 �p�, it follows that the
Coulomb potential can also be written as

V �r� � 2
Ze2

r
2

e
4h̄

� �u 3 �p� ?

µ
2
Ze �r
r3

∂
1 O�u2� .

(2.6)

The other higher order terms, besides being higher powers
in u, which in its own turn is very small, are also higher
powers in momenta.

Our proposal for the Hamiltonian can be justified from
field theory calculations. The electron-photon vertex func-
tion at tree level in noncommutative QED is [4]

Gm � e�i�2 h̄2�p3p0

gm � e2�i�2 h̄2�pq̃gm , (2.7)

where p and p0 are the incoming and outgoing electron
momenta, respectively, qm is the photon momentum, p0 2

p � q, and

p 3 p0 � piu
ijp0

j , q̃i � ujiqj .

Expanding the exponential in powers of u and keeping
only the first two terms, it appears that the second term will
give rise to an electric dipole moment [14], which couples
to an external electric field E as 2� �P� ? �E where

�Pi� � 2
1

2h̄
ep̃i �

1
2h̄

euijpj . (2.8)

This electric dipole moment, as we will see, changes the
usual Lamb shift. Actually one can go further and prove
that the potential (2.5), for all orders in u, is expected from
the noncommutative QED starting from (2.7). This can be
done noting that f�xi 1 ei� � eei �≠�≠xi�f�x�.

Our proposal for the noncommutative hydrogen atom
Hamiltonian can be generalized to other systems, i.e., tak-
ing the usual Hamiltonian but now being a function of
noncommutative coordinates [like (2.1)]. However, our
discussion based on noncommutative QED is applicable
only when we deal with the “electromagnetic” interaction.
In other words, at field theory tree level and in the non-
relativistic limit, the noncommutativity of space is probed
through the electric dipole moment of particles, whether
fermions or bosons.

In our formulation for noncommutative quantum me-
chanics, one can still use the usual definition for the proba-
bility density, jcj2. However, one should be aware that
there is no coordinate basis in this case. In our approach,
since the noncommutativity parameter, if it is nonzero,
should be very small compared to the length scales of the
system, one can always treat the noncommutative effects
as some perturbations of the commutative counterpart and
hence, up to first order in u, we can use the usual wave
functions and probabilities.

III. “Classical” spectrum for hydrogen atom in NC
theory.—Using the usual perturbation theory, the leading
corrections to the energy levels due to noncommutativity,
i.e., first order perturbation and in field theory tree level,
are

DEH2atom
NC � 2�nl0jj0zj

Ze2

4h̄

�L ? �u
r3 jnljjz� . (3.1)

We note that the above expression is very similar to that
of the spin-orbit coupling, where u

l2
e

is now replacing the

spin,
�S
h̄ , with le being the electron Compton wave length.

If we put u3 � u and the rest of the u components to
zero (which can be done by a rotation or a redefinition of
coordinates), then �L ? �u � Lzu and, taking into account
the fact that

�ljjzjLzjl0jj0z� � jz h̄

µ
1 7

1
2l 1 1

∂
dll0djzj0z ,

j � l 6
1
2

,

the energy level shift given by (3.1) becomes [15]

DEH2atom
NC � 2

mec2

4
�Za�4 u

l2
e
jz

µ
1 7

1
2l 1 1

∂

3 fn, ldll0djzj0z (3.2)

for j � l 6
1
2 and fn, l � 1�n3l�l 1

1
2 � �l 1 1�.

It is worth noting that in order to find � 1
r3 �, one should

integrate over the wave functions from r � 0; on the other
hand, the approximation we are working in (dropping the
terms higher order in u) is not valid for r &

p
u. However,

since the wave function for l fi 0 is zero at r � 0, the
result (3.2) still holds at this level.

The case of our interest, the 2P1�2 ! 2S1�2 transition
(Lamb shift), differs from the usual commutative case in
which the shift depends only on the l quantum number
and all the corrections are due to the field theory loop
effects. The Lamb shift for the noncommutative hydrogen
atom, besides the usual loop effects, depends on the jz
2717
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quantum number (only for the 2P1�2 level, as the levels
with l � 0 are not affected) and is there, even in the field
theory tree level. Hence we call it polarized Lamb shift.
More precisely, there is a new transition channel which is
opened because of noncommutativity: 2P

21�2
1�2 ! 2P

1�2
1�2 ,

with the notation nl
jz
j for the energy levels. The usual

Lamb shift, 2P1�2 ! 2S1�2, is now split into two parts,

2P
1�2
1�2 ! 2S1�2 and 2P

21�2
1�2 ! 2S1�2, which means that

the noncommutativity effects increase the widths and split
the Lamb shift line by a factor proportional to u.

IV. One loop corrections.—In the usual commutative
theory, the Lamb shift is believed to come from loop cor-
rections to QED. In the usual case, both vertex corrections,
in particular, the g 2 2 factor in the spin-orbit coupling,
and the corrections to photon propagator [16] are respon-
sible for the Lamb shift.

A. Noncommutative one loop vertex corrections: Ac-
cording to noncommutative QED one loop results, the elec-
tric and magnetic dipole moments of the electron, as a
Dirac particle, are [4]

� �m� � 2
e

2mc

µ
g �S 1

agE

3p
h̄

�u
l2
e

∂
, g � 2 1

a

p
,

� �P� � 2
e

4h̄
� �u 3 �p�

µ
1 1

3agE

p

∂
. (4.1)

Hence, the noncommutative one loop correction to the po-
tential (2.5), originating from vertex corrections up to the
first order in u, is

V
1Loop
NC vertex � 2

Ze2

4p
gEa

µ
3 2

2
3

∂ �L ? �u
h̄r3 . (4.2)

B. Noncommutative one loop photon propagator correc-
tions: The photon propagator at one loop in the noncom-
mutative QED, for small q, q̃ is given by [6]

Pmn�q� �
e2

16p2

Ω
10
3

�gmnq2 2 qmqn�

3

∑
ln�q2q̃2� 1

2
25

q2

m2

∏

1 32
q̃mq̃n

q̃4 2
4
3
q2

q̃2 q̃
mq̃n

æ
, (4.3)

where the term proportional to 2
25

q2

m2 is the fermionic loop
contribution which, because of the cancellation in phase
factors coming from noncommutativity, is the same as the
usual QED result. From (4.3), by taking only the part
of the propagator corresponding to timelike photons and
reintroducing h̄, c factors, in the units where the Coulomb
potential is 2Ze2

r , we obtain

V 1Loop
prop. �r� � 2 Ze2a

10
3h̄

Z
d3q

1
�q 2 e

2i �q?�r� h̄

3

∑
ln

µ
�q 2q̃2

h̄4

∂
1

2
25

�q 2

m2

∏
. (4.4)
2718
The second term in the integral yields the usual d3�r�-type
correction to the Coulomb potential. To work out the inte-
gral in the first term which is u dependent, let us assume
that only u12 � u is nonzero. If we denote the integral by
I�r , u�, then dI

du � 1
2pru and thus I�u, r� � 1

2pr ln�uL2�,
where L is a cutoff. This can be understood noting that,
because of IR/UV mixing [4,6], the Fourier transformation
and also (4.3) are valid for 1

Lu & q & L. Putting all these
results together, we have

V 1Loop
prop. �r� � 2

Ze2

2pr
10a

3
ln�uL2� 2 Ze2 4a

15
l2
ed

3�r� .

(4.5)

The first term, being proportional to 1
r , can be under-

stood as the normalization of charge at the one loop level
[6]; however, to find the physical value of a (noncom-
mutative QED coupling), one should study the Thomson
limit of Compton scattering [17] for the noncommutative
case [18]. Summing up all the one loop contributions to
the Lamb shift due to noncommutativity, (4.2) and (4.5),
we get

DE
1Loop
NC � 2

1
2p

mec
2�Za�2

3

∑
5a

3
ln�uL2�

1
n2 2

�Za�2

2
u

l2
e

3 gEa

µ
3 2

2
3

∂
jz�1 7

1
2l11 �

n3l�l 1
1
2 � �l 1 1�

∏
.

(4.6)

One can use the data on the Lamb shift to impose some
bounds on the value of the noncommutativity parameter, u.
Of course, to do it, we need to consider only the classical
(tree level) results, (3.2). Comparing these results, the
contribution of (3.2) should be of the order of 1026 1027

smaller than the usual one loop result, and hence

u

l2
e

& 1027a or u & �104 GeV�22.

This bound is indeed not a strong one, and one would need
some more precise experiments or data. Among other
processes, the e1e2 scattering data can provide a better
bound on u [18].

V. Noncommutative Stark and Zeeman effects.—Stark
effect: The potential energy of the atomic electron in an
external electric field oriented along the z axis is given, at
tree level, by

VStark � eEz 1
e

4h̄
� �u 3 �p� ? �E (5.1)

(neglecting the motion of the proton).
The change in the hydrogen atom energy level due to

noncommutativity [the second term in (5.1)] is

DENCStark � �nl0jj0zj
e

4h̄
� �u 3 �p� ? �Ejnljjz� . (5.2)
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Taking into account the fact that pi � m
i h̄ �xi ,H0�, where

H0 is the unperturbed Hamiltonian, so that H0jnljjz� �
Enjnljjz�, the correction to the energy levels becomes

DENCStark ~ � �u 3 �E�i�nl0jj0zj �xi ,H0� jnljjz� � 0 , (5.3)

meaning that, at tree level, the contribution to the Stark
effect due to noncommutativity is zero. We also note that,
adding the one loop corrections to electric dipole moment
(4.1), the above result will not be changed.

Zeeman effect: The new parts which are added to the
usual potential energy of the atom in a magnetic field, due
to noncommutativity, are

VNC Zeeman �
e

2mec

agEm2
e

3p h̄

µ
1 2 f

mp

me

∂
�u ? �B , (5.4)

where f is a form factor of the order of unity, as the proton
is not pointlike. As a result, the noncommutative contribu-
tion to the Zeeman effect in the first order of perturbation
theory is

DENCZeeman �
1

6pch̄
eagEme

µ
1 2 f

mp

me

∂
�u ? �B . (5.5)

VI. Conclusion.—We have presented the results on the
classical Coulomb potential within the formulated non-
commutative quantum mechanics for the hydrogen atom
and have obtained the corrections to the Lamb shift using
the noncommutative QED. If there exists any noncommu-
tativity of space-time in nature, as it seems to emerge from
different theories and arguments, its implications should
appear in physical systems such as the one treated in this
Letter. A detailed analysis of the results obtained here,
together with the treatment of other fundamental and pre-
cisely measured physical processes, will be given in a fur-
ther communication [18].
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