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Structure and Stability of Vortices in Dilute Bose-Einstein Condensates
at Ultralow Temperatures
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We compute the structure of a quantized vortex line in a harmonically trapped dilute atomic Bose-
Einstein condensate using the Popov version of the Hartree-Fock-Bogoliubov mean-field theory. The
vortex is shown to be (meta)stable in a nonrotating trap even in the zero-temperature limit, thus confirm-
ing that weak particle interactions induce for the condensed gas a fundamental property characterizing
“classical” superfluids. We present the structure of the vortex at ultralow temperatures and discuss the
crucial effect of the thermal gas component to its energetic stability.

DOI: 10.1103/PhysRevLett.86.2704 PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.40.Db
Dilute atomic Bose-Einstein condensates (BECs) have
been the subject of numerous experimental and theoretical
studies since the first landmark experiments in 1995 [1–3].
These quantum fluids are unique in providing an opportu-
nity to investigate how the phenomenon of Bose-Einstein
condensation is affected by weak particle interactions. The
fundamental question, whether superfluidity can be sus-
tained by particle interactions in such systems, has still
remained partly open despite extensive research.

The existence of stable, dissipationless vortices is a
feature characteristic to superfluid behavior. This aspect
on the superfluid properties of dilute BECs is especially
topical due to the recent experimental realizations of vor-
tices in such systems [4,5]. The stability of vortex struc-
tures has been under vigorous theoretical analysis [6–18].
It has been shown that vortices in cylindrically trapped
condensates are unstable within the Bogoliubov mean-field
approximation [8–10,16,19] unless the system is continu-
ously driven by a suitable rotating perturbation [10,12,15].
On the other hand, by taking into account effects of the
thermal gas component in the system, vortices have been
shown to become (meta)stable at high enough temperatures
even in a nonrotating trap, or when a suitable external pin-
ning potential is applied [13].

The absence of dissipation in the superfluid flow implies
that a circulating current persists even when the system is
not rotated by an external perturbation. “Classical” super-
fluid behavior thus implies stability of vortices even in a
nonrotating vessel. Strictly speaking, such states are lo-
cal minima of free energy and only metastable, the global
minimum naturally corresponding to a nonrotating state.
However, in order to investigate the superfluid properties
of dilute boson condensates, it is just this kind of local en-
ergetic stability of vortices that needs to be clarified.

In this Letter we present results of computations con-
cerning the structure of a cylindrically trapped dilute BEC
containing a vortex line and show that such states are lo-
cally energetically stable at all temperatures T , Tc (Tc
denotes the critical temperature of condensation) even in
a nonrotating trap without additional pinning potentials.
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In this respect such systems are indeed shown to behave
like classical superfluids. We also discuss the obvious dis-
crepancy between this result and the predictions of the
Bogoliubov approximation, and the role of the thermal
gas fraction in stabilizing the vortex state in the zero-
temperature limit.

We consider a dilute Bose-condensed gas con-
sisting of atoms with mass m, trapped by a radial
harmonic potential Vtrap�r� �

1
2mv2

r r2 in cylindrical
coordinates r � �r , u, z�. The particle interactions are
modeled by an effective low-temperature contact poten-
tial Vint�r, r0� � gd�r 2 r0�, with the bare interaction
constant g and s-wave scattering length for binary col-
lisions a related by g � 4p h̄2a�m. Assuming the total
particle number in the condensate to be large enough
to justify grand canonical formalism, the equilibrium
condensate wave function f�r� satisfies the generalized
Gross-Pitaevskii (GP) equation [20]

�H0 1 Uc�r� jf�r�j2 1 2Ue�r�r�r��f�r� � mf�r� ,

(1)

where H0 � 2h̄2=2�2m 1 Vtrap�r� is the bare
single-particle Hamiltonian for the trap, m is the chemical
potential, and r�r� is the density of the noncondensed gas.
Functions Uc�r�, Ue�r� are effective interaction couplings
for various mean-field approximations — for the Popov
version they are simply chosen as Uc�r� � Ue�r� � g.
In addition, we have performed computations within
so-called G1 and G2 approximations, which are gap-
less mean-field theories taking into account effects of
the background gas on colliding atoms, neglected in
the Popov approximation [21,22]. In the G1 version
Ue�r� � g and Uc�r� � g�1 1 D�r��f2�r��, where D�r�
is the anomalous average of two Bose field operators; for
G2 one chooses Ue�r� � Uc�r� � g�1 1 D�r��f2�r��.
The usual procedure of diagonalizing the mean-field
Hamiltonian by a Bogoliubov transformation yields
coupled eigenvalue equations for the bosonic quasiparticle
© 2001 The American Physical Society
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amplitudes uq�r�, yq�r�, and the eigenenergies Eq of the
form [20]

L uq�r� 1 Uc�r�f2�r�yq�r� � Equq�r� , (2a)

L yq�r� 1 Uc�r�f�2�r�uq�r� � 2Eqyq�r� . (2b)

Above, L � H0 2 m 1 2Uc�r� jf�r�j2 1 2Ue�r�r�r�
and q denotes quantum numbers specifying the quasipar-
ticle states. In addition, we have self-consistency relations
for the noncondensate density r�r� and for the anomalous
average D�r�:

r�r� �
X

q
��juq�r�j2 1 jyq�r�j2�n�Eq� 1 jyq�r�j2� , (3)

D�r� �
X

q
�2uq�r�y�

q�r�n�Eq� 1 uq�r�y�
q�r�� , (4)

where n�Eq� � �eEq�kBT 2 1�21 is the Bose distribution
function. The anomalous average is ultraviolet divergent,
and we renormalize it by subtracting the last term in the
sum of Eq. (4) [23].

Considering a condensate penetrated by a single vortex
line, we search for solutions of the form f�r� � f�r�eimu ,
where m denotes the number of circulation quanta of the
vortex. In this Letter we restrict ourselves to the case
m � 1 due to the instability of multiquantum vortices
[14,16,18]. By utilizing the cylindrical symmetry, Eqs. (1)
and (2) can be reduced to radial equations, which we dis-
cretize using a finite-difference method. Dirichlet bound-
ary conditions are imposed at r � R, the radius R chosen
large enough for finite-size effects for the structure of the
vortex to be negligible. In the z direction we impose peri-
odic boundary conditions at z � 6L�2, thus modeling a
system in the limit of a very weak axial trapping potential.
Because of cylindrical symmetry, the quasiparticle ampli-
tudes can be chosen to be of the form

uq�r� � uq�r�eiqz�2p�L�z1i�qu1m�u , (5a)

yq�r� � yq�r�eiqz�2p�L�z1i�qu2m�u , (5b)

where qu and qz are integer angular and axial momentum
quantum numbers, respectively. Discretization transforms
Eqs. (2) to a narrow-banded matrix eigenvalue problem,
which we solve using the Lanczos algorithm implemented
in the ARPACK subroutine libraries [24,25]. The nonlinear
Gross-Pitaevskii equation is solved using finite-difference
discretization and an overrelaxation method. For a given
value of the chemical potential m, the solution of the GP
equation and the noncondensate density are integrated to
find out the total particle number, and the process is iter-
ated until the chemical potential corresponds to the preset
total number of particles. The solution of the GP equa-
tion can be mapped to a zero-energy solution of Eqs. (2),
thus providing a test for the accuracy and consistency of
the numerical methods used to solve these equations. We
search self-consistent solutions for Eqs. (1)–(4) using an
iterative scheme: The condensate wave function and the
chemical potential corresponding to a preassigned total
number of particles are computed by solving the GP equa-
tion. Using the quasiparticle states obtained from Eqs. (2),
new mean-field potentials are computed using the self-
consistency equations. The whole procedure is repeated
until convergence to a desired accuracy. In order to stabi-
lize the iteration at low temperatures, we use underrelax-
ation in updating the mean-field potentials.

The physical parameter values for the gas and the trap
were chosen to be the same as in Ref. [13]. The gas con-
sists of sodium atoms with mass m � 3.81 3 10226 kg
and s-wave scattering length a � 2.75 nm. The fre-
quency of the trap is nr � vr�2p � 200 Hz, and
the density of the system is determined by treating
N � 2 3 105 atoms in the computational domain with
dimensions R � 20 mm and L � 10 mm. The critical
condensation temperature for the system is approximately
Tc 	 1 mK. The spatial grid for discretizing the quasi-
particle eigenequations was chosen dense enough to
guarantee a relative accuracy of 1023 for the energy of the
lowest excitation, and better than 1024 for the other states.

Results of the self-consistent computations performed
within the Popov approximation are shown in Figs. 1–4.
Figure 1 displays part of the self-consistent quasipar-
ticle excitation spectrum for the condensate vortex state at
the temperature T � 100 nK. Only states with qz � 0, 1,
which contain the excitations of lowest energy, are shown.
These states determine the local energetic stability of
the vortex configuration: If there exists a quasiparticle
excitation with negative energy, the condensate can lower
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FIG. 1. Part of the self-consistent quasiparticle excitation spec-
trum at temperature T � 100 nK for the harmonically trapped
condensate containing a single-quantum vortex line. Only states
with axial momentum quantum numbers qz � 0 (dots) and qz �
1 (circles) are shown. The lowest Kelvin mode state, the LCLS,
is denoted by a diamond. The inset presents a blowup of the
lowest part of the full spectrum.
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its energy by exciting this negative bosonic mode, the state
thus being prone to collapse. For single-quantum vortices
the lowest excitations with qu � 21, the so-called Kelvin
mode states, form standing waves localized at the vortex
core, the energies of these states being substantially lower
than those for other angular momentum quantum numbers.
The sign of the energy of the lowest Kelvin mode excita-
tion, the lowest core localized state (LCLS), determines
the local energetic stability of the vortex. The LCLS is
denoted by a diamond in Fig. 1. Because of the very low
energy of the LCLS compared to the other excitations,
its contribution to the mean-field potentials in the core
region becomes dominant in the zero-temperature limit.
On the other hand, even minor changes in the potential
functions affect the energy of the LCLS, thus altering its
contribution drastically via the sensitive Bose factor. This
behavior makes the iteration process extremely delicate
at low temperatures [13], requiring the use of suitable
underrelaxation methods.

The temperature dependence of the excitation energy
of the LCLS is shown in Fig. 2. By carefully adjusting
underrelaxation in the iteration procedure, we are able to
compute the self-consistent structure of the vortex down to
the temperature of T � 1 nK. The convergence at these
temperatures is slow, but unquestioned. Especially, it was
confirmed that the iteration converges to the same solu-
tion irrespective of the initial ansatz used. However, it
seems obvious that with additional computational effort
one could reach even lower temperatures. The result shows
that although the energy of the LCLS approaches zero in
the low-temperature limit, as expected, the vortex configu-
ration is locally stable at all temperatures T , Tc [13].
We obtained the same result also using the G1 and G2
approximations.

The local energetic stability of the vortex within the
Popov, G1, and G2 [26] approximations is to be compared
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FIG. 2. Energy of the lowest excitation, the LCLS, at tempera-
tures T � 1 200 nK (Tc 	 1 mK). The finite positive value of
the lowest excitation frequency implies the vortex to be locally
energetically stable.
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with the instability predicted by the Bogoliubov approxi-
mation [9], which does not treat the thermal part of the
gas self-consistently. Figure 3 shows the density profiles
of the condensate and the noncondensate at ultralow tem-
peratures. The thermal gas is concentrated in the vortex
core, where it fills the space left by the condensate and ex-
erts an outward pressure on it, preventing the condensate
from collapsing into the core. Self-consistent treatment of
the thermal gas fraction is thus crucial in determining the
stability of vortices in such systems, as seen in the discrep-
ancy between the predictions of the Popov, the G1 and the
G2, and, on the other hand, the Bogoliubov approxima-
tion. At temperatures of the order of Tc, the validity of
the Bogoliubov approximation is expected to be question-
able due to the substantial thermal gas fraction. It is to be
noted that it can fail also in the low-temperature limit in
certain respects, the stability of the vortex state being one
example. This is due to the nonvanishing, residual noncon-
densate fraction present in interacting systems even in the
zero-temperature limit. Figure 4 displays the computed
thermal gas fraction at ultralow temperatures. It clearly
shows the residual thermal fraction, which stabilizes the
vortex at ultralow temperatures.

It is to be noted that the positivity of the LCLS energy
implies that vortices slightly displaced from the symme-
try axis of the trap precess in the direction opposite to the
condensate flow around the core [27]. Recent experiments,
however, show precession in the direction of the flow, ex-
cept for a minority of the so-called rogue vortices [28].
This seems to imply a negative LCLS energy, in agreement
with the zero-temperature Bogoliubov approximation. The
apparent discrepancy between the experiments and the
predictions of the self-consistent approximations could be
due to insufficient thermalization in the experiments of the
gas in the region of the (moving) vortex core. We expect
that investigation of the validity of this assumption will
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FIG. 3. Condensate and thermal gas density profiles at tem-
peratures T � 1, 100, and 200 nK. The noncondensate fills the
space left by the condensate in the vortex core, thus exerting an
outward pressure which stabilizes the vortex configuration.
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FIG. 4. Noncondensate fraction as a function of temperature
for the vortex configuration. Because of particle interactions,
there exists a residual thermal gas fraction even in the zero-
temperature limit.

further clarify the role of quasiparticles in stabilizing vor-
tices in weakly interacting Bose-Einstein condensates.

In conclusion, we have computed within self-consistent
mean-field theories the structure of a cylindrically trapped,
dilute atomic Bose-Einstein condensate penetrated by a
vortex line. The vortex state is shown to be locally en-
ergetically stable in a nonrotating system even in the zero-
temperature limit, thus confirming the system to act in this
respect like a superfluid. The thermal gas concentrated in
the vortex core is shown to have a crucial effect in stabi-
lizing the vortex state even at ultralow temperatures, due
to a residual noncondensate fraction present in interacting
systems in the zero-temperature limit.
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